Polynomial regression

1. Two models are proposed to fit data:

Model 1: $y = w_0 + w_1 x$

Model 2: $y = w_0 + w_1 x + w_2 x^2 + \dots + w_9 x^9$

- (a) **Model 1**, when compared to **Model 2**, for the same train dataset of about 30 entries is expected to have:
 - A. Lower MSE on training dataset
 - B. Higher MSE on training dataset
 - C. Lower MSE on test dataset
 - D. Higher MSE on test dataset
 - E. The difference for training dataset cannot be determined.
 - F. The difference for test dataset cannot be determined.

Solution: Model 2 is expected to overfit on train dataset.

- (b) Adding 100 entries to the train dataset beyond the initial entries, for **Model 1**:
 - Improves significantly MSE on test dataset
 - $\bigcirc\,$ Improves significantly MSE on train dataset
 - \bigcirc Worsen significantly MSE on test dataset
 - \bigcirc Worsen significantly MSE on train dataset
 - $\sqrt{}$ Change in MSE on test dataset is negligible
 - $\sqrt{}$ Change in MSE on train dataset is negligible

Solution: Model 1 is either fit or underfit and cannot improve significantly.

- (c) Adding 100 entries to train dataset beyond the initial entries, for **Model 2**:
 - $\sqrt{}$ Improves MSE on test dataset
 - \bigcirc Improves MSE on train dataset
 - \bigcirc Worsen MSE on test dataset
 - $\sqrt{}$ Worsen MSE on train dataset
 - Change in MSE on test dataset is negligible
 - Change in MSE on train dataset is negligible

Solution: Model 2 is overfit that reduces with increase in the size of the dataset.

- (d) The number of entries in train dataset is 10. In this case:
 - A. Model 1 is likely to overfit the data
 - B. Model 2 is likely to overfit the data
 - C. Model 1 is likely to underfit the data
 - D. Model 2 is likely to underfit the data

Solution: Model 1 may either underfit or fit the data (2 uncertain options). Model 2 for sure overfits the data.

- (e) Model 1 is trained on 100 dataset entries and has similar train and test MSE
 - $\sqrt{}$ The model is in its optimal performance.
 - Regularization is recommended to improve performance.
 - Adding dataset entries is recommended to improve performance.
 - \bigcirc Neither answer is correct.

Solution: Only change of the model can improve the performance.

- (f) **Model 2** is trained on 100 dataset entries and train MSE is significantly better then test MSE.
 - $\sqrt{}$ The model is likely to overfit
 - \bigcirc The model is likely to underfit
 - \bigcirc The model is in its optimal performance.
 - $\sqrt{\text{Regularization is recommended to improve performance.}}$
 - \checkmark Adding dataset entries is recommended to improve performance.

(g) Model 3: $y = w_0 + w_1 x + w_2 x^2 + \dots + w_N x^N$ is proposed

- \bigcirc N is model parameter
- \sqrt{N} is model hyper-parameter
- \bigcirc For the selection of optimal N, the N with the minimal MSE performance on the train dataset is selected.
- \bigcirc For the selection of optimal N, the N with the minimal MSE performance on the test dataset is selected.
- $\sqrt{}$ For the selection of optimal N, the N with the minimal MSE performance on the validation dataset is selected.

Regularization

2. During the training of the model, the following weights were learned:

	Α	В
w_0	-0.93232	-0.93232
w_1	-0.39239	0.641779
w_2	-0.24492	-0.319227
w_3	-0.48193	1.043743
w_4	-0.24317	-0.340061
w_5	0.061323	-0.78238

- A. Column A is for L_2 -regularized weights, and column B is without regularization.
- B. Column **A** is without regularization and column **B** is for L_2 -regularized weights.
- C. Columns cannot be clearly attributed if regularized or not.

Solution: Note the significant difference in $\sum_i w_i^2$.

3. λ is termed as regularization parameter. For sufficiently high λ :

A. The model tend to underfit

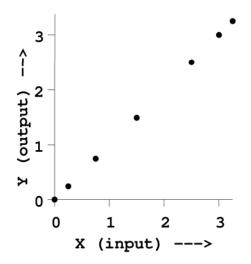
- B. The model tend to overfit
- C. The model tend to reach its optimal performance
- D. The model is not changed

Solution: The factor $\lambda \sum_i w_i^2$ dominates the original loss function.

Linear Regression

Linear regression model is $y = w_0 + w_1 x$.

4. Consider the following data



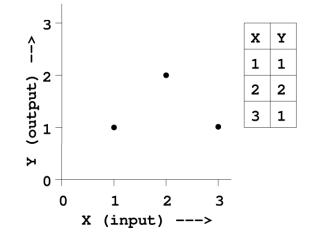
(a) What is the expected MSE on this data?

Solution: Without calculation, MSE = 0 since it is a linear line.

(b) 3 points on the right are test set and 3 points on the left are train test. What is MSE of the both?

Solution: Without calculation, MSE = 0 since it is a linear line.

5. Consider the following data:

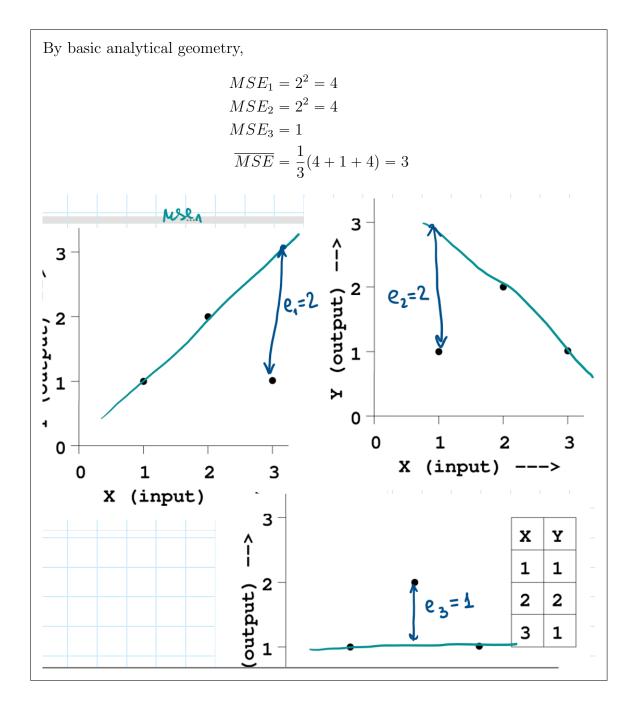


(a) What is the expected MSE on this data? (Hint: by symmetry it is clear that the best fit to the three datapoints is a horizontal line).

Solution: Following the hint, $w_1 = 0$ and $w_0 = ?$ $MSE = e_1^2 + e_2^2 + e_3^2$ $= (w_0 - 1)^2 + (w_0 - 2)^2 + (w_0 - 1)^2$ $= w_0^2 + w_0^2 + w_0^2 - 2w_0 - 4w_0 - 2w_0 + 1 + 4 + 1$ $= 3w_0^2 - 8w_0 + 6$ $MSE_2 = \frac{1}{3} (e_1^2 + e_2^2 + e_3^2) = \frac{1}{3}MSE$ $\frac{d}{dw_0}MSE = 6w_0 - 8 = 0$ $w_0 = \frac{4}{3} = 1\frac{1}{3}$ $\Rightarrow MSE(w_0) = 3\left(\frac{4}{3}\right)^2 - 8\frac{4}{3} + 6 = \frac{2}{3}$

(b) (9 points) What is the MSE of leave-one-out cross-validation (3-fold in this case) of running linear regression on this data?

Solution: Each time one point is for test and two others are for train.



Logistic Regression

6. Logistic regression model is given by

$$\hat{y} = \frac{1}{1 + \exp(-\mathbf{x}^T \mathbf{w})}$$

For weights $w_0 = -15$, $w_1 = 3$, $w_2 = 5$, what is the prediction probability for $\hat{y} = 1$ for $(x_1, x_2) = (1, 2)$?

