
ML2025

Dima Bykhovsky

April 23, 2025

Contents

1 Introduction 3
1.1 Data types . 3

1.1.1 Basic . 3
1.1.2 Signals and time-series . 3
1.1.3 Dataset . 3
1.1.4 Adversarial attacks . 3

1.2 Tasks . 3
1.3 Basic workflow . 4
1.4 Model . 4
1.5 Loss Function . 4

1.5.1 Loss Function Minimization . 4
1.6 Metrics . 5

2 Least-squares and Linear Regression 6
2.1 Uni-variate Linear LS . 6

2.1.1 Definition . 6
2.1.2 Minimization . 6

2.2 Vector/Matrix Notation . 7
2.2.1 Uni-variate model . 7
2.2.2 Multivariate LS . 7

2.3 Coefficient of Determination . 9
2.4 Iterative Solution - Gradient descent (GD) . 9
2.5 Takeaways . 9

3 Basic Signal Analysis 11
3.1 Signal Preliminaries . 11
3.2 Amplitude estimation . 11
3.3 Amplitude and phase estimation . 12
3.4 Frequency estimation . 13
3.5 Harmonic Signal Analysis . 14
3.6 Discrete Fourier Transform (DFT) . 15

3.6.1 Single frequency analysis . 16
3.6.2 Power Spectral Density . 16
3.6.3 Spectral Spreading and Leakage . 16

3.7 Summary . 16
Appendices . 17
3.A Single frequency analysis . 17

3.A.1 Theory . 17
3.1.2 Power . 18

3.2 Takeaways . 18

4 ARMA Model 19
4.1 Auto-Correlation Function . 19

4.1.1 Linear Prediction & AR(1) . 19
4.1.2 Auto-correlation function (ACF) . 19
4.1.3 ACF Properties . 20
4.1.4 Confidence Interval . 21

2

4.1.5 Auto-covariance . 21
4.1.6 Stationarity and Relation between ACF and PSD . 22

4.2 AR(p) Model . 22
4.2.1 Yule-Walker Form . 22
4.2.2 Moving Average . 23
4.2.3 Nearest Neighbor (Näıve) . 24
4.2.4 Time-Domain Filtering . 24

4.3 Linear Prediction of Sinusoidal Signal . 24
4.4 Partial auto-correlation function . 25

4.4.1 Relation between PACF and AR(p) . 26
4.5 MA model . 26

4.5.1 MA and AR relations . 26
4.5.2 The relation between MA(q) and ACF . 27

4.6 ARMA . 27

5 Models Characterization and Tuning 28
5.1 Polynomial model . 28
5.2 Overfitting and underfitting . 28
5.3 Cross-validation . 28

5.3.1 Summary . 29
5.4 Generalization . 29
5.5 Noisy deterministic function interpretation and bias-variance trade-off 30
5.6 Takeaways . 30

6 Overfitting Management 31
6.1 Dataset size . 31
6.2 Regularization . 31

6.2.1 Ridge Regression . 31
6.2.2 General aspects . 32

6.3 Normalization and Standardization . 32

7 Logistic Regression 34
7.1 Generalized Binary Linear Classification Models . 34
7.2 Basic Linear Model . 34
7.3 Logistic Model . 34
7.4 Cross-entropy loss . 35

7.4.1 Entropy . 35
7.4.2 Cross-entropy . 36
7.4.3 Binary Cross-Entropy (BCE) . 36
7.4.4 Binary Cross-Entropy (BCE) Loss . 36

7.5 BCE Loss for Logistic Regression . 36
7.6 k-NN . 37

7.6.1 Curse of Dimensionality . 38

8 Classification Performance Metrics 39
8.1 Definitions . 39
8.2 Confusion matrix . 39
8.3 Performance Metrics . 39

8.3.1 Accuracy . 39
8.3.2 Precision . 40
8.3.3 Recall (sensitivity) . 40
8.3.4 Specificity . 40
8.3.5 F1-score . 40

8.4 Imbalanced Dataset . 40
8.5 Decision threshold . 41

8.5.1 Receiver Operating Characteristics (RoC) . 41
8.5.2 Area under curve (AUC) . 41

9 Notation 43

Chapter 1

Introduction

1.1 Data types
Goal: Define notation of data.

1.1.1 Basic
Typically, the data types of interest are:

Numerical

Binary Used for binary information represented by
{0, 1} or {True, False}. Typically used for binary classi-
fication problems.

Integer Typically used to describe the data with lim-
ited number of possible numerical descriptors. The
most popular representations used signed or unsigned
numbers with 8, 16, 32 or 64 bit representation.

Real The basic numerical representation. Standard
representations are 32 or 64 bit for CPU and 8(new!),
16, 32 bit for GPU.

Categorical

Nominal Variables with values selected from a group
of categories, while not having any kind of natural order.
Example: car type

Ordinal A categorical variable whose categories can
be meaningfully ordered.
Example: age, grade of exam.

1.1.2 Signals and time-series
Two main categories:

• Discrete-time signals that are representation of
physical continuous-time prototype signal. Signals
typically have constant sampling frequency, and
typically handled by signal processing techniques.
Example: Voltage measurement is a signal and
once-an-hour power-meter measurements.

• Time-series are typically derived from a time-
stamped discrete-time origin in social sciences.
Sometimes have an arbitrary sample times.
Example: economical parameters.

1.1.3 Dataset
The basic dataset includes matrix X ∈ RM×N (M rows
and N columns) and vector y ∈ RM .
A single dataset entry is a vector

xT
i =

[
xi1 xi2 · · · xiN

]
, (1.1)

where i is the number of features (raw) and N if the
dimension (number of columns), xi ∈ RN and xij ∈ R.
All the values of M entries are organized in a matrix
form,

X =

— xT

1 —
— xT

2 —

—
... —

— xT
M —

 =

x11 x12 · · · x1N

x21 x22 · · · x2N

...
...

xM1 xM2 · · · xMN

(1.2)

1.1.4 Adversarial attacks
Adversarial example is an input to a machine learning
model that is purposely designed to cause a model to
make a mistake.
These attacks can happen both during collecting dataset
for training and during the inference of an already
trained model.

1.2 Tasks
Typical related task:

• Prediction or regression, y is quantitative (Fig. 1.1).
• Classification, y is categorical.
• Clustering, no y is provided - it is learned from

dataset.
• Anomaly detection, somewhere between classifica-

tion and clustering.
• Segmentation
• Simulation
• Signal processing tasks: noise removal, smoothing

(filling missing values), event/condition detection.

4

0 1 2 3 4 5 6 7
x

-2

-1

0

1

2

3

4

5

6

y

Figure 1.1: Regression example: what is the value of y
for given x?

1.3 Basic workflow
The basic ML/DL workflow is presented in Fig. 1.2. The
workflow parts are:

• Data: available data
• Pre-processing: preliminary dataset exploration

and validation of dataset integrity (e.g., same phys-
ical units for all values of the same feature).

• Model: basic assumptions about the hidden pattern
within the data

• Model training: minimization of the loss functions
to derive the most appropriate parameters.

• Performance assessment according predefined met-
rics.

Model
ParametersHyper-

parameters

Loss to
minimize

Performance
mertics

Data

Pre-processing

Solver/
Optimizer

Figure 1.2: Basic workflow of ML/DL solution.

Baseline The basic end-to-end workflow implementa-
tion is called baseline.

1.4 Model
We assume that there is an underling problem (e.g.,
regression and classification) formulation is of the form

y = f(x) + ϵ (1.3)

where the values of x (scalar or vector) and y are known
(it is the dataset) and ϵ is some irreducible noise. Some-
times, zero-mean noise is assumed.
The goal is to find the function f(·). The way to define
the f(·; w) is termed model that depends on some model
parameters vector w. The process of finding regression
solution by a set of parameters w is called learning, such
as the resulting model can provide output

ŷ0 = f(x0; w) (1.4)

for some new data x0.

Parameters vs hyper-parameters

Model parameters: Model parameters are learned
directly from a dataset.
Hyper-parameters: Model parameters that are not
learned directly from a dataset are called hyper-
parameters. They are learned in in-direct way during
cross-validation process in the follow.

Parametric vs non-parametric models

There are two main classes of models: parametric and
non-parametric, summarized in Table 1.1.

1.5 Loss Function
Loss (or cost) function is a function that relates between
dataset outputs y and model outputs ŷ. The parameters
w are minimum of that function,

ŵ = arg min
w

L(y, ŷ) (1.5)

The minimization of the loss function is also termed
training.

1.5.1 Loss Function Minimization
Goal: Minimum of the loss function for a given model.

Closed-form solution A closed-form solution for w is
a solution that is based on basic mathematical functions.
For example, a ”normal equation” is a solution for linear
regression/classification.

5

Table 1.1: Comparison of parametric and non-parametric models.

Aspect Parametric Non-parametric
Dependence on number of
parameters on dataset size Fixed Flexible

Interpretability Yes No
Underlying data
assumptions Yes No

Risk Underfitting due to rigid structure Overfitting due to high flexibility
Dataset size Smaller Best for larger
Complexity Often fast Often complex
Examples Linear regression k-NN, trees

Local-minimum gradient-based iterative algo-
rithms This family of algorithms is applicable only
for convex (preferably strictly convex) loss functions.
For example, gradient descent (GD) and its modifica-
tions (e.g., stochastic GD) are used to evaluate NN
parameters. Another example is the Newton-Raphson
algorithm.

• Some advanced algorithms under this category also
employ (require) second-order derivative ∂2

∂wL for
faster convergence.

• If either derivative is not available as a closed-form
expression, it is evaluated numerically.

Global optimizers The goal of global optimizers
is to find a global minimum of non-convex function.
These algorithms may be gradient-free, first-derivative
or second-derivative. The complexity of these algorithms
is significantly higher than the local optimizer and can
be prohibitive for more than a few hundred variables
in X.

1.6 Metrics
Metrics are quantitative performance indicators of the
model that relate between y and ŷ. Sometimes, the
minimum of the loss function is also a metric, e.g. mean
squared error (MSE).

Chapter 2

Least-squares and Linear Regression

Goal: • The goal of the least squares (LS) method
is to minimize MSE (or RMSE) between the given
data and the parametric model.

• Define and analyze a model that is based on a linear
relation between data and the outcome.

• Find the linear model parameters by LS.

2.1 Uni-variate Linear LS
2.1.1 Definition
The simplest sub-case is the (random) experiment
that produces a set of M points (or measurements),
{xk, yk}M

k=1 [7]. The linear model is

y = f(x; w0, w1) = w0 + w1x + ϵ, (2.1)

where w0 and w1 are the model weights (or parame-
ters) and ϵ is zero-mean noise. The model outcomes
(predictions) are

ŷk = f(xk; w0, w1) = w0 + w1xk, (2.2)

where ŷk is the prediction outcome of xk.
The performance metric is mean-square error (MSE)
that is given by

Jmse(w0, w1) = 1
M

M∑
k=1

(yk − ŷk)2

= 1
M

M∑
k=1

e2
k

(2.3)

or root-MSE (RMSE)

Jrmse(w0, w1) =
√

Jmse(w0, w1). (2.4)

Note, sometimes MSE is termed as sum of squared errors
(SSE).
For both of these metrics, the corresponding loss (or
cost) function to minimize is

L(w0, w1) =
M∑

k=1
(yk − ŷk)2

=
M∑

k=1
(yk − w0 − w1xk)2

(2.5)

since either root and/or constant multiplication does
not change the desired minimum,

w0, w1 = arg min
w0,w1

Jmse(w0, w1)

= arg min
w0,w1

Jrmse(w0, w1)

= arg min
w0,w1

L(w0, w1)

(2.6)

Note that loss function and performance metrics does
not have to be the same.

2.1.2 Minimization
This minimum is given by a solution of the set of equa-
tions,

∂

∂w0
L(w0, w1) = 0

∂

∂w1
L(w0, w1) = 0

(2.7)

The resulting equations are
2

M∑
k=1

(yk − w0 − w1xk) · (−1) = 0

2
M∑

k=1
(yk − w0 − w1xk) · (−xk) = 0

(2.8)

After some basic algebraic manipulations, the resulting
set of equations isw0M +w1

∑M
k=1 xk =

∑M
k=1 yk

w0
∑M

k=1 xk +w1
∑M

k=1 x2
k =

∑M
k=1 xkyk

(2.9)

This set of equations is termed normal equation.
The interesting and numerically stable form of the nu-
merical solution is by usage of average estimation by
mean,

E [z] = z̄ = 1
N

N∑
k=1

zk (2.10)

Var[z] = z2 − z̄2 (2.11)
Cov[x, y] = xy− x̄ȳ (2.12)

7

x

y

ek

xk

yk

ŷk = w0 + w1xk

Figure 2.1: Linear regression visualization. The goal is
to minimize the total area

∑
k e2

k of the rectangles.

The resulting prediction is

ŷ = E [y] + Cov[x, y]
Var[x] (x− E [x]) (2.13)

This is probabilistic result.
Notes:

• Var[x] ̸= 0 requirement.
• E [y] = E [x] = 0⇒ w0 = 0.

Concluding notes:
• The resulting model is also termed as linear regres-

sion, linear trend-line and linear prediction.
• The straightforward solution may result in ill-

conditioned matrix. Reformulation of the solution
can result in a better numerical stability, e.g. [7, Ch.
5, Question 5, pp. 260]. There are more accurate
algorithms than just multiply inverse matrix.

• For numerical stability, the variance of xk samples
is required to be non-zero (distinct xk values).

2.2 Vector/Matrix Notation
2.2.1 Uni-variate model
To improve the mathematical representation, vector
notation can be used. This time, the points {xk, yk}M

k=1
are organized into vectors, with a few additional ones,
as follows,

x =

x1
x2
...

xM

 , y =

y1
y2
...

yM

 , 1M =

1
1
...
1

 ∈ RM , w =
[

w0
w1

]

(2.14)
The resulting model notation is

ŷ = f(X; w) = 1M w0 + xw1 = Xw, (2.15)

where X =
[
1M x

]
∈ RM×2 and w =

[
w0 w1

]T

.
The corresponding loss functions is

L(w) = (y− ŷ)T (y− ŷ) = ∥y− ŷ∥2

= (y−Xw)T (y−Xw) = ∥y−Xw∥2 (2.16)

and the corresponding optimal minimum (Eq. (2.6))
results from the solution of normal equation (matrix
form)

∇wL(·) = −XT (y−Xw) = 0 (2.17)

and is given by

XT (y−Xw) = XT y−XT Xw = 0

XT y =
(

XT X
)

w

Finally,
wopt =

(
XT X

)−1
XT y (2.18)

2.2.2 Multivariate LS
For the multivariate N -dimensional formulation,

X =
[
1 x1 · · · xN

]
∈ RM×(N+1) (2.19)

w =
[
w0 w1 · · · wN

]T

∈ RN+1 (2.20)

All the LS discussion on ŷ = Xw is the same indepen-
dent from the number of variables.

Dataset

All the data rows in (X, y) are called dataset. The
matrix X is assumed full-rank, i.e. columns are linearly
independent.

Moore–Penrose inverse (pseudo-inverse)

Moore–Penrose inverse is the extension of an ordinary
inverse matrix for none-rectangular matrices,

X+ =
(

XT X
)−1

XT ∈ R(N+1)×M , (2.21)

such that

X+X =
(

XT X
)−1

XT X = IN+1

Note, the by-definition implementation of X+ may have
numerical stability problems with

(
XT X

)−1
. All the

modern programming languages have numerically-stable
and efficient implementation of pseudo-inverse calcula-
tions.
The common numerical notation is

wopt = X+y (2.22)

Implementation note: there are numerically optimized
algorithms for wopt, such as:

1. lsqminnorm (Matlab)

2. Python, numpy.linalg.lstsq
and scipy.linalg.lstsq

https://www.mathworks.com/help/matlab/ref/lsqminnorm.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lstsq.html

8

Projection matrix

The model output is given by

ŷ = Xw = X
(

XT X
)−1

XT y

= XX+y = Py
(2.23)

where
P = X

(
XT X

)−1
XT ∈ RM×M (2.24)

is a projection matrix, i.e. projection of y into a base
derived from X.
Important properties of the matrix P:

• Symmetric P = PT ,
• Idempotent P = P2,
• Orthogonality, P ⊥ (I−P)

Proof. P(I−P) = P−P2 = 0.
• I−P is also projection matrix.

Model error

The model error is

e = y− ŷ = y−Py = (I−P) y, (2.25)

such that L(w) = e2, Jmse(w) = e2, Jrmse(w) =
√

e2.

Error and data orthogonality

e ⊥ X⇒ XT e = 0N+1 (2.26)

Proof:

XT e = XT y−XT X
(

XT X
)−1

XT y

XT y−XT y = 0
(2.27)

Error and prediction orthogonality

e ⊥ ŷ⇒ ŷT e = eT ŷ = 0 (2.28)

Proof:
ŷT e = yT P (I−P) y

= yT Py− yT PPy
= yT Py− yT Py = 0

(2.29)

The interesting outcome of this property is a relation
between error and prediction,

∥y∥2 = ∥ŷ∥2 + ∥e∥2 (2.30)

Proof.
∥y∥2 = ∥ŷ + e∥2

= (ŷ + e)T (ŷ + e)
= ŷT ŷ + eT e

(2.31)

Average error

The average error is zero-mean,

ē = 1
M

M∑
k=1

ek

=
M∑

k=1
ek = 1T e = 0

(2.32)

Proof.
XT e = 0← (2.26)

⇒

1T

xT
1
...

xT
N

 e =

1T e
...

 = 0
(2.33)

The interesting consequence is

ȳ = ¯̂y (2.34a)
= w0 + w1x̄1 + · · ·+ wN x̄N (2.34b)

Proof.
ȳ = ŷ + e

= ¯̂y + ē
(2.35)

Error distribution

The values of the error vector e are assumed to be
normally distributed, due to Central Limit Theorem
(CLT). Typically, this assumption is not need in ML,
but it is important for statistical analysis for small values
of M .

MSE

The reduced expression for the resulting minimal loss is

Lmin =
M∑

k=1
y2

k −
N∑

j=0
wjyT xj

= yT y− yT Xw

(2.36)

Proof.

msemin = eT e
= (y− ŷ)T e

= yT e−�
�ŷT e

= yT (y−Xw)

= yT y− yT
[
1 x1 · · · xN

]
︸ ︷︷ ︸

R1×(N+1)

w

(2.37)

The MSE or RMSE evaluation from the loss is straight-
forward.

9

2.3 Coefficient of Determination
To emphasis the difference between loss and metrics, the
following example of LR metric is provided, A coefficient
of determination, denoted R2 or r2 (R-square) is based
on the relation

M∑
k=1

(yk − ȳ)2

︸ ︷︷ ︸
SST

=
M∑

k=1
(ŷk − ȳ)2

︸ ︷︷ ︸
SSR

+
M∑

k=1
e2

k︸ ︷︷ ︸
SSE

(2.38)

• SST - total sum of squares
• SSR - sum of squares due to regression
• SSE - sum of square errors (or residual sum of

squares)
R2 = SSR

SST = 1− SSE
SST (2.39)

Typically, 0 ≲ R2 ≤ 1 (may be negative under certain
circumstances). R2 is unitless.

2.4 Iterative Solution - Gradient
descent (GD)

Goal: Find the minimum of the function:
• First-order derivative based.
• Local minimum.

Let’s assume some function y = f(x), with x, y ∈ R,
differentiable with dy

dx = f ′(x).
• f ′(x) is a slope of f(x) at a point x.
• By the definition of the derivative, for some small

ϵ,
f(x + ϵ) ≈ f(x) + ϵf ′(x)

• Given the sign of the derivative,

f(x− ϵ) < f(x), f ′(x) > 0
f(x + ϵ) < f(x), f ′(x) < 0

• For sufficiently small ϵ,

f(x− ϵ sign(f ′(x))) ≤ f(x)

The idea of the algorithm is to reduce f(x) by going in
direction opposite sign of derivative, f ′(x).
Gradient descent (GD) - scalar function: For
differentiable function f(x), the iterative algorithm

xn+1 = xn − αf ′(xn) (2.40)

converges to some local minimum of f(x).
Required parameters are:

• Step-size α > 0 is some positive constant or some
function of n, αn.

• x0 is an initial guess.
Some of the most common stopping conditions are:

• Reaching the point of slow convergence,∣∣xn+1 − xn

∣∣ < ϵ.
• Limiting the number of iterations, n ≤ n0.

Gradient descent (GD) - vector function: For dif-
ferentiable multivariate and multidimensional function
f(x) : RN → RN , the iterative algorithm is

xn+1 = xn − α∇xf ′(xn). (2.41)

Each dimension is iteratively reduced according to its
derivative. Notes:

• Easy to implement.
• Requires analytical or numerical derivative.
• Non-trivial selection of the optimal value of α. In

more general case, vector of n-dependent values
may be desirable.

• Useful only for the function with single (global)
minimum, such as MSE minimization.

GD for MMSE: Optimal values of w may be found
by

wn+1 = wn − α∇wL

= wn −
α

M
XT (Xwn − y) (2.42)

2.5 Takeaways

0

0.005

0.01

0.015

0.02

M
SE

M

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Figure 2.2: MSE as a function of number of data points,
M .

These assignments will help you understand the practical
implications of linear regression and the influence of data
size on model performance.

Preface

In recent years, the convergence of machine learning
(ML) and signal processing (SP) has gathered grow-
ing attention in engineering education. Students are
often introduced to ML principles at an early stage, yet
many advanced SP topics, ranging from linear systems
and time-frequency analysis to probabilistic modeling,
traditionally require multiple specialized courses [4]. Al-
though these SP methods yield comprehensive perfor-
mance insights and rigorous conclusions, teaching them
can be both timely and demanding.
A key bridge between basic ML concepts and advanced
SP techniques is the least squares (LS) method. LS is
grounded in a simple and intuitive idea: minimizing the
sum of squared errors. While direct LS computations
may be O(N3), and thus less efficient than typical SP
methods (O(N log N) to O(N2)), the LS perspective fos-
ters a simpler, data-driven understanding of fundamen-
tal SP tasks. For example, the estimation of sinusoidal
signal parameters in noise can be introduced by viewing
it purely as a regression problem, bypassing the need
for more involved probabilistic analyses. Likewise, the
discrete Fourier transform (DFT) can be reframed as
an extension of sinusoidal parameter estimation, illus-
trating SP principles with real arithmetic alone.
An LS-centric viewpoint aligns well with the founda-
tional prerequisites of many ML courses and can be in-
tegrated at an early stage of engineering or data science
programs. It offers an accessible path for teaching core
SP ideas to engineering students who might lack exten-
sive mathematical or probabilistic training. Although
the underlying techniques are not new, this data-driven,
regression-based interpretation may be more intuitive for
those already familiar with basic ML concepts, enabling
them to explore SP topics with minimal additional the-
oretical overhead.

Chapter 3

Basic Signal Analysis

Goal: This chapter introduces the fundamental con-
cepts and methods for analyzing and estimating (learn-
ing) parameters of a discrete-time sinusoidal signal ob-
served in additive noise.

3.1 Signal Preliminaries
A general continuous-time cosine signal can be written
as

y(t) = A cos(2πF0t + θ) + ϵ(t),
= A cos(Ω0t + θ) + ϵ(t),

(3.1)

where
• A > 0 is the amplitude,
• −π < θ ≤ π is the phase,
• F0 is the frequency in Hz,
• Ω0 = 2πF0 is the radial frequency in rad/sec,
• ϵ(t) is zero-mean additive noise.

The only assumption for the additive noise is that it is
zero-mean, ∑

n

ϵ[n] = 0. (3.2)

No additional assumptions, such as Gaussianity, are
applied; however, the special case of additive white
Gaussian noise (AWGN) is is further refined as tips for
selected topics.
For the further analysis, we use the sampled version
x[n] of the continuous-time signal x(t), sampled with
frequency Fs = 1/T ,

y[n] = y(nT)
= A cos (ω0n + θ) + ϵ[n] n = 0, . . . , L− 1,

(3.3)

where
ω0 = 2πF0T = 2π

F0

Fs
(3.4)

is the angular frequency (measured in rad) derived from
the analog frequency F0 and L is the resulting number
of samples.
In order to accurately reproduce a cosine signal, the
Nyquist criterion demands F0 < Fs/2, which implies
ω0 < π. This requirement can be easily illustrated by
the following example. Consider two signals:

x1(t) = cos(0.6πt), x2(t) = cos(2.6πt)

Sampling with Fs = 1 Hz results in two identical signals,

x1[n] = cos(0.6πn),
x2[n] = cos(2.6πn) = cos(0.6πn + 2πn) = x1[n].

This phenomenon is called aliasing. Note, when ω0 = 0
the signal is the DC level, y(t) = y[n] = A cos(θ). There-
fore, the sampling frequency requirement is 0 ⩽ ω < π.
This relation holds for all the following discussions and
derivations.
The energy of the signal x[n] is defined as

Ex = ∥x∥2 =
∑

n

x2[n], (3.5)

where x is the vector of samples of the signal x[n]. The
corresponding power is

Px = 1
N

Ex = 1
N
∥x∥2

. (3.6)

3.2 Amplitude estimation
Goal: Find the amplitude of a sinusoidal signal in noise
that best fits the model in a least squares (LS) sense.

Given a signal model with a known frequency ω0,

y[n] = A cos (ω0n) + ϵ[n] n = 0, . . . , L− 1 (3.7)

the goal is to estimate the amplitude A that best fits a
provided model,

ŷ[n] = A cos (ω0n) (3.8)

Technically, we are looking for the value of A that mini-
mizes the squared error,

L(A) =
∑

n

(y[n]− ŷ[n])2. (3.9)

In the linear LS regression formulation, we define the
corresponding parameters y, X and w. First, the re-
quired weight is w = A. The matrix X is formed by
samples of the signal

{
cos(ω0n)

}L−1
n=0 ,

X =
[
1 cos(ω0) cos(2ω0) · · · cos

(
(L− 1)ω0

)]T

(3.10)

12

Finally, y is the vector of samples of
{

y[n]
}L−1

n=0 . The
resulting solution is straightforward,

Â = (XT X)−1XT y

=
∑

n x[n]y[n]∑
n x2[n]

=
∑

n y[n] cos(ω0n)∑
n cos2(ω0n)

(3.11)

If we substitute the model into the resulting solution,

Â =
∑

n x[n]
(
Ax[n] + ϵ[n]

)∑
n x2[n]

= A +
∑

n x[n]ϵ[n]∑
n x2[n] ,

(3.12)

it produces a true value of A with some additive noise.

0 10 20 30 40 50
Time [n]

-5

0

5

A
m

pl
itu

de

SNRtheory : 0:0584 (!12:3dB); SNRest : 0:0474 (!13:2dB)

Signal
A =1.5

Â =1.35

(a) Reconstructed signal, ŷ.

0 10 20 30 40 50
Time [n]

-15

-10

-5

0

5

10

A
m

pl
itu

de

Residual error e = y ! ŷ

e
noise

(b) Residual error. Ideally, if the model was perfect, the
residual would be equal to the added noise.

Figure 3.1: Example of the cosine signal amplitude
estimation. Note the negative sign of SNR in dB units.

The resulting residual error is given by
e = y− ŷ. (3.13)

Since e ⊥ ŷ the power/energy terms can be decomposed
as follows,

∥y∥2 = ∥ŷ∥2 + ∥e∥2
, Py = Pŷ + Pe. (3.14)

An interesting interpretation of this result is estimated
signal to noise ratio (SNR), defined as

ŜNR =

∥∥∥ŷ2
∥∥∥∥∥e2
∥∥ (3.15)

Moreover, due to zero-mean property of the noise, the
estimated variance of the noise is

σ̂2
ϵ = 1

L
∥ê∥2

. (3.16)

The following example (Fig. 3.1) uses a synthetic cosine
signal of length L = 51 samples, angular frequency
ω0 = 0.1π and amplitude A = 1.5. Gaussian noise with
standard deviation σ = 5 is then added to create a noisy
observation. A least-squares regression is applied to
estimate the amplitude, yielding σ̂ϵ = 4.43.

3.3 Amplitude and phase estima-
tion

Goal: Find amplitude and phase of a sinusoidal signal
in noise.
The following analysis is provided for the more general
model,

y[n] = A cos (ω0n + θ) + ϵ[n] n = 0, . . . , L− 1, (3.17)

with two unknown parameters, the amplitude A and
the phase θ.
The linear LS reformulation of the signal model

ŷ[n] = A cos (ω0n + θ) (3.18)

involves the use of trigonometric identities to express
the cosine with a phase shift as a linear combination of
sine and cosine signals,

A cos (ω0n + θ) = wc cos(ω0n) + ws sin(ω0n), (3.19)

where
wc = A cos(θ)
ws = −A sin(θ).

(3.20)

This transforms the problem into a two-parameter linear
LS problem in terms of wc and ws [1]. The resulting
LS formulation involves a two-valued vector of linear
coefficients, w =

[
wc ws

]T

, the vector y of samples
of y[n], and the matrix X of dimensions L× 2 that is
given by

X =

1 0

cos(ω0) sin(ω0)
cos(2ω0) sin(2ω0)

...
...

cos
(
(L− 1)ω0

)
sin
(
(L− 1)ω0

)

 . (3.21)

13

Once ŵ has been found, the amplitude and phase can
be recovered from

A =
√

w2
c + w2

c

θ = − arctan
(

wc

ws

) (3.22)

SNR and noise variance interpretations are similar to
in the previous model in Eqs. (3.15) and (3.16).
The numerical example is presented in Fig. 3.2. The
configuration is similar to the previous figure, expect
the lower noise variance, σ = 1.5. Nevertheless, there
is a decrease in performance, since two parameters are
estimated simultaneously.

0 10 20 30 40 50
Time [n]

-3

-2

-1

0

1

2

3

A
m

pl
itu

de

SNRtheory : 0:637 (!1:96dB); SNRest : 0:511 (!2:91dB)

Signal
A = 1:5; 3 = !0:25:

Â = 1:33; 3̂ = !0:225:

Figure 3.2: Example of the cosine signal amplitude and
phase estimation. Note the lower estimation accuracy
compared to Fig. 3.1, since two parameters are estimated
simultaneously.

Implementation Tip
• This estimation procedure is optimal in the maxi-

mum likelihood (ML) sense under additive white
Gaussian noise (AWGN) and achieves the Cramér-
Rao lower bound (CRLB) [1, 6].

• The theoretical lower bound (also termed Cramer-
Rao lower bound(CRLB)) on the average estima-
tion accuracy of wc, ws is given by [1, Eqs. (5.47-
48)]

Var
[
ŵc,s

]
≳

2σ2

L
(3.23)

This bound is the tightest for the AWGN case and
is less accurate for other noise distributions.

• The approximated estimation variance can be easily
evaluated by Monte-Carlo simulations for any set
of parameters and any distribution of interest.

3.4 Frequency estimation
Goal: If the frequency ω0 is also unknown, it can be
estimated by searching for the ω̂0 that best fits a sinu-

soidal model for the observed data, i.e., that minimizes
the residual error norm or maximizes the reconstructed
signal energy.

Since ω0 is unknown, the matrix X may be parameter-
ized as a frequency-dependent one, X(ω). Here, the
estimated signal is frequency-dependent

ŷ(ω) = X(ω)w(ω), (3.24)

where w(ω) are the estimated parameters wc and ws at
that frequency. The corresponding frequency-dependent
residual error is given by

e(ω) = y− ŷ(ω). (3.25)

Since the error e(ω) is orthogonal to ŷ,

∥y∥2 =
∥∥ŷ(ω)

∥∥2 +
∥∥e(ω)

∥∥2
. (3.26)

To find the frequency that best represents the data, we
seek the one that maximizes the energy of the recon-
structed signal (or equivalently minimizes the residual
error), as mentioned above

ω̂0 = arg min
ω

∥∥e(ω)
∥∥2 = arg max

ω

∥∥ŷ(ω)
∥∥2

. (3.27)

Note, this optimization problem can be challenging
because the objective function may exhibit multiple local
maxima/minima. Therefore, an appropriate numerical
global optimization method is required.
Once ω̂0 has been found, the amplitude and phase are
estimated using the corresponding linear LS solution
w(ω0). This solution also results in SNR and noise
variance estimations, as in Eqs. (3.15) and (3.16).

Tip: Interpretation in Terms of the Periodogram
The function

P (ω) = 1
L

∥∥ŷ(ω)
∥∥2 (3.28)

as a function of ω is termed a periodogram that is a
frequency-dependent measure of signal power that ap-
proximates the power spectral density (PSD) of the
signal. By scanning over frequencies, the ω that yields
the maximum periodogram value is taken as the fre-
quency estimate, ω0.
A numerical example of the signal with additive white
Gaussian noise (AWGN), and with the parameters
A = 1.5, ω0 = 0.1π, θ = −π/4 and σ2

ϵ = 1, is presented
in Fig. 3.3. First, periodogram peak is found (Fig. 3.3a).
Than, the subsequent amplitude/phase estimation result
is presented (Fig. 3.3b).

Tip: Theoretical performance bounds Under
AWGN assumption, theoretical SNR is given by

SNR = A2

2σ2 (3.29)

14

0 0.2 0.4 0.6 0.8 1
!=:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
P

(!
)

!̂0

maxP (!) = P (!̂0)

(a) The periodogram P (ω) with a prominent peak at
ω0 ≈ 0.1π.

0 10 20 30 40 50
Time [n]

-3

-2

-1

0

1

2

3

A
m

pl
itu

de

SNRtheory : 1:26 (1:02dB); SNRest : 0:877 (!0:569dB)

Signal
A = 1:5; 3 = !0:25:; !0 = 0:1:

Â = 1:19; 3̂ = !0:235:; !̂0 = 0:0976:

(b) Reconstracted signal.

Figure 3.3: The reconstruction in (b) uses the estimated
amplitude, phase, and angular frequency (Â, θ̂, ω̂0)
found by maximizing the periodogram in (a). Note
the lower estimation accuracy than in Fig. 3.2, since
three parameters are estimated.

and the corresponding CRLB on the estimation vari-
ances are [6]

Var
[
Â
]
⩾

2σ2

L
[V 2] (3.30)

Var[ω̂0] ⩾ 12
SNR× L(L2 − 1) ≈

12
SNR× L3

[(
rad

sample

)2
]

(3.31)

Var
[
θ̂
]
⩾

2(2L− 1)
SNR× L(L + 1) ≈

4
SNR× L

[rad2]

(3.32)

For analog frequency F0 = ω0

2π
Fs,

Var[F0] = Var[ω0]
(

Fs

2π

)2
[Hz2] (3.33)

In practice, for short data lengths or non-Gaussian
noise, these bounds provide only approximate guides to
achievable performance.

3.5 Harmonic Signal Analysis
A particularly important class of signals encountered in
many practical applications is the harmonic or periodic
signal. Such a signal can be expressed as a sum of
cosine terms whose frequencies are integer multiples
(harmonics) of a fundamental frequency ω0.

y[n] = A0 +
M∑

m=1
Am cos(mω0n + θm), (3.34)

where:
• A0 is the constant (DC) component,
• Am and θm represent the amplitude and phase of

the m-th harmonic,
• ω0 is the fundamental angular frequency,
• mω0 corresponds to the frequency of the m-th har-

monic,
• and M is the number of harmonics in the model.

Given ω0, the model is linear in terms of the unknown
parameters {Am, θm} for each harmonic m = 1, . . . , M .
Similar to the single-frequency case, the LS matrix X is
constructed with columns corresponding to cos(mω0n)
and sin(mω0n) for m = 1, . . . , M , plus a column of
ones for the DC component. Each pair (Am, θm) can
be recovered from the LS estimated cosine and sine
coefficients in the manner described for single-frequency
amplitude-phase estimation. The resulting SNR and
noise variance estimates are similar to those described
in the previous sections.
The model order M (number of harmonics) is a hyper-
parameter that should be chosen carefully. Too few
harmonics can fail to capture essential signal structure,
while too many may overfit noise. The maximum value
of M is bounded by the Nyquist criterion, M < π/ω0.
If ω0 is not known, the approach that is described in the
frequency estimation section can also be applied here.
Once ω̂0 has been determined from a maximum of the
harmonic periodogram,

Ph(ω) = 1
L

M∑
m=1

∥∥y(mω)
∥∥2

, (3.35)

the harmonic amplitudes and phases can be estimated
via LS at this frequency [3].
Total harmonic distortion (THD) is a measure com-
monly used in electrical engineering, audio processing,
and other fields to quantify how much the harmonic
components of a signal differ from a pure sinusoid at
the fundamental frequency. It is defined as the ratio of
the root-sum-square of the harmonic amplitudes and
the amplitude of the fundamental frequency,

THD =

√∑M
m=2 A2

m

A1
. (3.36)

15

A lower THD value indicates that the signal is closer to
a pure sinusoidal shape, whereas a higher THD signifies
a stronger presence of higher-order harmonics.
The example is the sampled current of a switch-mode
power supply in a 50Hz network sampled at a 50kHz
frequency [2]. Figure 3.4a shows a reconstruction of
the signal with M = 250 harmonics. The estimated
amplitudes Âm are shown (Fig. 3.4b) as a function of the
harmonic index m, including the DC term at m = 0. A
larger magnitude indicates a more prominent harmonic
component. The first non-DC harmonic amplitude m =
1 corresponds to the fundamental frequency, ω0, while
higher indices capture additional harmonics in the signal.
The estimated fundamental frequency is 50.104Hz with
the corresponding THD of about 1.6. Figure 3.4c shows
estimated SNR (top) and the noise standard deviation
(bottom) vary as the number of harmonics M in the
model increases.
Tip: The frequency estimator is an effective ML esti-
mator with known analytical CRLB [3].

3.6 Discrete Fourier Transform
(DFT)

The discrete Fourier transform (DFT) can be viewed as
a systematic way of decomposing a finite-length signal
into a sum of harmonically related sinusoids. In fact, it
is a special case of the harmonic signal representation
discussed earlier. Specifically, setting the fundamental
angular frequency to ω0 = 2π

N and using N ≥ L − 1
harmonics, the harmonic model reduces exactly to a
DFT decomposition that provides a natural harmonic
decomposition of the signal into N harmonics that are
evenly spaced in frequency.
DFT representation assumes that any arbitrary, finite-
time signal y[n] may be represented as a sum of sinu-
soidal signals,

y[n] =
N−1∑
k=0

Ak cos
(

k
2π

N
n + θk

)
, n = 0, . . . , L− 1

(3.37)
When N ≥ L, the DFT allows for perfect reconstruction
of the signal using its harmonic representation:

y = Xŵ.

It is also worth noting the symmetry in the DFT,

cos
(
(N − k)∆ω

)
= cos

(
k∆ω

)
sin
(
(N − k)∆ω

)
= − sin

(
k∆ω

)
,

(3.38)

resulting in redundant information for frequencies kω0
above and below π,

Ak = AN−k

θk = −θN−k

. (3.39)

As a result, only frequencies kω0 ≤ π need to be consid-
ered uniquely.

0 500 1000 1500 2000 2500
-0.5

0

0.5

A
m

p
li
tu

d
e

Signal

750 800 850 900
Time [n]

0

0.5

A
m

p
li
tu

d
e

M=50

750 800 850 900
Time [n]

0

0.5
M=250

(a) The upper plot shows the signal overlaid with the least-
squares harmonic reconstruction using the estimated fre-
quency, amplitude, and phase parameters. The lower plots
zoom in on a smaller portion of the time axis for different
values of M , and demonstrate the challenging shape of the
signal.

0 10 20 30 40 50
m

0

0.02

0.04

0.06

0.08

0.1

Â
m

(b) Estimated harmonic amplitudes, Am.

0 50 100 150 200 250
0

100

200

^
S
N

R

0 50 100 150 200 250
M

0

0.05

0.1

<̂
0

(c) Estimated SNR and noise std, σ̂ϵ.

Figure 3.4: Example of a harmonic signal analysis.

16

3.6.1 Single frequency analysis
Consider a signal y[n] assume a discrete frequency
ω0 = 2π

N k is given. To estimate amplitude and phase at
this predefined frequency, we can form a matrix X,

X1 =
[
xc xs

]
,

where

xc =

cos
(

2π k
N · 0

)
cos
(

2π k
N · 1

)
...

cos
(

2π k
N (L− 1)

)

and xs =

sin
(

2π k
N · 0

)
sin
(

2π k
N · 1

)
...

sin
(

2π k
N (L− 1)

)

.

By evaluating XT
1 X1, we find that the sine and co-

sine columns form an orthogonal basis for this single
frequency, with

xT
c xc = N

2 , (3.40a)

xT
s xs = N

2 , (3.40b)

xT
c xs = 0. (3.40c)

Stacking these results for all k = 0, . . . , N − 1 yields the
complete DFT matrix forms a complete orthogonal basis
for the L-sample signal space. The further discussion of(

XT X
)−1

matrix properties may be found in Examples
4.2 and 8.5 in [6].
Moreover, since

(
XT X

)−1
takes a particularly simple

diagonal form, and the least squares solution ŵ for the
parameters wc,k and ws,k (corresponding to amplitude
and phase components at ωk) is

wc,k = 2
N

L−1∑
n=0

y[n] cos
(

2π
k

N
n

)
, (3.41a)

ws,k = 2
N

L−1∑
n=0

y[n] sin
(

2π
k

N
n

)
. (3.41b)

Tip The fast Fourier transform (FFT) algorithm ef-
ficiently computes Y [k], providing Ak = |Y [k]|/N
and θk = ∠(Y [k]) with significantly lower memory re-
quirements and complexity than direct calculation in
Eq. (3.41). When only a single frequency value is of
interest, Goertzel algorithm is more efficient method for
the task. Moreover, it can be used for computationally
effective peaking of the maximum in Eq. (3.27).

3.6.2 Power Spectral Density
The power of a signal of the form

xk[n] = Ak cos
(

k
2π

N
n + θk

)
(3.42)

is
Pyk

= 1
L
∥yk∥2 = A2

k

2 . (3.43)

This value is known as the power spectral density
(PSD) at the frequency ω = k 2π

N . The correspond-
ing squared magnitude values A2

k/2 are known as the
discrete-frequency periodogram (Eq. (3.28)), and this
is the basic method for the PSD estimation of a signal.
Plotting such a periodogram gives a frequency-domain
representation of the signal’s power distribution, high-
lighting which frequencies carry the most power.
DFT is energy conservation transform (Parseval’s The-
orem) that states the relation

N−1∑
k=0

A2
k = 1

L
∥y∥2

. (3.44)

3.6.3 Spectral Spreading and Leakage
In an idealized setting, a pure cosine signal has a per-
fectly defined frequency representation. For instance,
consider the discrete-time signal,

x[n] = A cos
(

k0
2π

L
n

)
, k0 ∈ {1, · · · , L− 1} (3.45)

where k0 is the frequency index. The Fourier transform
of this signal yields a single spectral component at fre-
quency w0 = k0

2π
L , such that the spectral amplitude Ak

at each value of k is given by

Ak =
{

A
2 k = k0, N − k0

0 otherwise
. (3.46)

Under these conditions, the signal’s spectral represen-
tation seems to be strictly localized at the specific fre-
quency ωk, with no energy distributed elsewhere in the
spectrum. However, practical scenarios deviate from
this ideal case. In particular, if a denser frequency
grid is employed (i.e. N > L) or the frequency varies
continuously (as in Eq. (3.24)), the resulting spectral
distribution can differ substantially from the discrete,
single-peak ideal (Fig. 3.5). This difference arises be-
cause, in general, X(ω)T X(ω) is not orthogonal as in
Eq. (3.40). As a result, two effects are introduced:

• The main frequency peak broadens, resulting in
“spectral spreading”.

• Additional frequency components emerge beyond
the broadened main peak, termed “spectral leak-
age.”

3.7 Summary
The summary of the presented approach is shown in
Table 3.1. The presented approach involves a design of
matrix X and using LS to estimate unknown parameters.
The key addressed task are as follows.

17

Table 3.1: Comparison and summary of different signal estimation methods.

Task Parameters Matrix X SNR

Amplitude only A given ω0 A single column of cos(ω0n) ∥ŷ∥2

∥e∥2

Amplitude & phase A, θ given ω0
Two columns of cos(ω0n) and
sin(ω0n)

∥ŷ∥2

∥e∥2

Frequency
estimation ω0, A, θ

Frequency-dependent cos(ωn)
and sin(ωn) columns Maximum of

∥∥ŷ(ω)
∥∥2∥∥e(ω)
∥∥2

Fourier series
(harmonic
decomposition)

A0, {Am, θm}M
m=1,

possibly ω0

Harmonic cos/sin columns at
multiples of ω0, cos(mω0n),
sin(mω0n)

∥ŷ∥2

∥e∥2 , can include

frequency dependence
if ω0 unknown

DFT {Ak, θk}N−1
k=0

Multiple pairs of columns
cos
(

2πk
N n

)
, sin

(
2πk
N n

)
for

k = 0, . . . , N − 1

Not used directly.
Perfect reconstruction
for N ≥ L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
m

p
li
tu

d
e

0 1 2 3 4 5 6 7
Frequency [k]

Ak

A(!)

Figure 3.5: Illustration of a single-frequency cosine
signal’s spectrum under ideal assumptions (discrete,
integer-multiple frequencies) versus practical conditions
(denser frequency grid or non-integer frequencies). Note
how the ideal single peak broadens and additional low-
level components appear, highlighting the effects of
spectral spreading and leakage.

Amplitude Estimation With a known frequency ω0,
the amplitude A is found via LS. The resulting residuals
provide noise variance and SNR estimates.
Amplitude and Phase Estimation: For known ω0,
rewriting

A cos(ω0n + θ) = wc cos(ω0n) + ws sin(ω0n)

transforms the problem into a two-parameter LS regres-
sion.

Frequency Estimation: If ω0 is unknown, it is found
by searching for the frequency that maximizes the fitted

signal energy.

Harmonic Signal Analysis: Signals can be ex-
pressed as sums of multiple harmonics. Extending the
LS approach to multiple harmonics allows estimation of
each amplitude and phase. THD quantifies deviations
from a pure tone.

Discrete Fourier Transform (DFT): The DFT is a
special case of harmonic modeling, decomposing a signal
into equally spaced frequency components. Efficiently
computed by the FFT, the DFT is central to signal
spectral analysis.
Although the estimators presented above have been ex-
tensively analyzed for the specific case of additive white
Gaussian noise (AWGN) in the statistical signal process-
ing literature [6, 5], conducting such an analysis requires
a significantly more extensive mathematical framework.
Furthermore, it is worth noting that any bias and vari-
ance in these estimators can be readily approximated
via Monte Carlo simulations under various parameter
settings and noise distributions.

Appendices

3.A Single frequency analysis
3.A.1 Theory

• XT X analysis:

XT X =

xT
c xc xT

s xc

xT
s xc xT

s xs

 (3.47)

18

with the following values

xT
c xc =

N−1∑
n=0

cos2
(

2π
k

N
n

)
= N

2

xT
c xs =

N−1∑
n=0

cos
(

2π
k

N
n

)
sin
(

2π
k

N
n

)
= 0

= xT
s xc

xT
s xs =

N−1∑
n=0

sin2
(

2π
k

N
n

)
= N

2
(3.48)

•
(

XT X
)−1

analysis: The resulting matrix

(
XT X

)−1
=

 2
N 0
0 2

N

 (3.49)

• Finally,
(

XT X
)−1

XT y is

wc,k = 2
N

L−1∑
n=0

y[n] cos
(

2π
k

N
n

)
(3.50a)

ws,k = 2
N

L−1∑
n=0

y[n] sin
(

2π
k

N
n

)
(3.50b)

The orthogonality in more general form is given by
N−1∑
n=0

cos
(

2π
j

N
n

)
cos
(

2π
k

N
n

)
= N

2 δ [j − k] (3.51)

N−1∑
n=0

cos
(

2π
k

N
n

)
sin
(

2π
k

N
n

)
= 0 ∀j, k (3.52)

N−1∑
n=0

sin
(

2π
j

N
n

)
sin
(

2π
k

N
n

)
= N

2 δ [j − k] , (3.53)

3.1.2 Power
For a more general case of an arbitrary ω values, the
signal of the form

y[n] = A cos(ω0n) (3.54)

has the ω0-dependent power,

Py = A2

4L

(
1 + 2L− sin(ω0 − 2Lω0)

sin(ω0)

)
, (3.55)

that results from the time-limited origin of the signal
y[n]. For the infinite number of samples, the resulting
power converges to a continuous-time power expression,

lim
L→∞

Py →
A2

2 (3.56)

3.2 Takeaways

Chapter 4

ARMA Model

Goal: Linear prediction coefficients for systems-inspired
models.
This chapter extends least-squares (LS)-based modeling
to systems and time-series contexts, focusing on linear
prediction coefficients derived from signals. Instead of
restricting to a predefined parametric form like a sinu-
soid, here we consider arbitrary zero-mean finite-time
signals x[n] and y[n], n = 0, . . . , L− 1, in the presence
of zero-mean noise, ϵ[n].

4.1 Auto-Correlation Function
Goal: Evaluate correlation between a signal and its
time-shifted replicas to derive meaningful insights.

4.1.1 Linear Prediction & AR(1)
In system modeling and time-series analysis, a common
approach is to express the current sample of a signal
in terms of its past values. A simple first-order autore-
gressive (AR(1)) model predicts the current sample x[n]
from a single past sample x[n − 1], using the system
model

x[n] = a1x[n− 1] + ϵ[n]. (4.1)
and

x̂[n] = a1x[n− 1] (4.2)
Here, a1 is the linear prediction coefficient that indicates
how strongly the previous sample x[n−1] influences the
current sample x[n].
To determine a1, minimization of SE loss function

L(a1) =
∑

n

(
x[n]− a1x[n− 1])

)2 (4.3)

is used. Setting the derivative of L(a1) with respect to
a1 to zero leads to

dL(a)
da

= 2
∑

n

(x[n]−a1x[n−1])(−x[n−1]) = 0 (4.4)

Finally, the LS solution for a1 is

a1 =
∑

n x[n]x[n− 1]∑
n x2[n− 1] . (4.5)

The value a1 is termed as the (single) prediction coeffi-
cient of AR(1) model.

Matrix formulation

The coefficient may be formulated as a relation between
two vectors

x[1]
x[2]

...
x[L− 2]
x[L− 1]

︸ ︷︷ ︸

ŷ

= a1

x[0]
x[1]

...
x[L− 3]
x[L− 2]

︸ ︷︷ ︸

x

, (4.6)

or in a compresed form

ŷ = a1x. (4.7)

The correspoding MMSE loss is

L(a1) = ∥y− a1x∥2 (4.8)

and its minimum is given by normal equation,
(Eq. (2.18)),

a1 =
(

xT x
)−1

xT y. (4.9)

The substitution results in the solution identical to
Eq. (4.5).

4.1.2 Auto-correlation function (ACF)
To generalize beyond a single lag, we use one-coefficient
prediction from the current sample x[n] and its time-
shifted version x[n− k], using the k-step predictor,

x̂[n] = akx[n− k]. (4.10)

The corresponding solution is very similar to the solution
for k = 1,

ak =
∑

n x[n]x[n− k]∑
n x2[n− k] . (4.11)

The nominator of Eq. (4.11) is termed (raw, or unscaled)
auto-correlation function (ACF) at lag k,

Rxx[k] =
∑

n

x[n]x[n− k], k = 0, . . . , L− 1 (4.12)

The ACF provides a measure of how linearly dependent
the signal is on its shifted versions. Variants like biased,
unbiased, and normalized ACF offer different normal-
ization schemes to handle finite data length and scaling
issues.

20

Biased auto-correlation Another useful definition
is averaged sum of y[n]y[n− k],

Rxx,biased[k] = 1
L

∑
n

x[n]x[n− k], k = 0, . . . , L− 1

(4.13)

= 1
L

Rxx[k] (4.14)

is termed biased ACF.

Normalized auto-correlation Another version is
normalized ACF of the form

Rxx,norm[k] = Rxx[k]
Rxx[0] ≲ ak. (4.15)

Note, the difference between denominator above and
the one in Eq. (4.11) is∑

n

x2[n]︸ ︷︷ ︸
Rxx[0]

−
∑

n

x2[n−k] =
∑
n<k

x2[n] = x2[0]+· · ·x2[k−1]

(4.16)
Nevertheless, ak expression in Eq. (4.11) and the latter
expression are approximately equal for a sufficiently
high L. Moreover, the denominator is k-independent.

Unbiased auto-correlation Note, that the ACF in-
cludes summation only of n− k terms. Another useful
normalization is

Rxx,unbiased[k] = 1
L− k

∑
n

x[n]x[n− k]

= 1
L− k

Rxx[k]
(4.17)

This time it is assumed that
1
L

∑
n

x2[n] ≈ 1
L− k

∑
n

x2[n− k]

x2[0] + x2[1] + · · ·x2[L− 1]
L

≈ x2[k] + · · ·x2[L− 1]
L− k

(4.18)
and the resulting expression

L

L− k

Rxx[k]
Rxx[0] = L

L− k
Rxx,norm[k]

= Rxx,unbiased[k]
Rxx,unbiased[0] ≈ ak

(4.19)

is assumed to be closer approximation to ak than the
normalized auto-correlation, for a relatively small values
of k.

4.1.3 ACF Properties
The signal energy is given by

Ex =
∑

n

x2[n] = Rxx[0] (4.20)

and it is also the higher value of ACF,

Rxx[0] > Rxx[k]. (4.21)

Theoretically, Rxx[0] = Rxx[k] may happen under cer-
tain conditions but unachievable for the practical time-
limited signals.
The corresponding average power is given by

Px = 1
L

∑
n

x2[n] = Rxx,biased[0] (4.22)

The ACF has inherent time symmetry,

Rxx[k] = Rxx[−k] (4.23)

Correlation Coefficient Interpretation

The resulting loss is given by (following Eq. (2.36) and
the discussion above for L→∞)

Lmin(ak) =
L−1∑
n=0

x2[n]− ak

L−1∑
n=0

x[n]x[n− k]

= Rxx[0]− akRxx[k]

≲ Rxx[0]

1−
(

Rxx[k]
Rxx[0]

)2

= Rxx[0]
(

1−R2
xx,norm[k]

)
≈ Rxx[0]

(
1− ρ2

xx[k]
)

(4.24)

The value of ρxx[k] is termed correlation coefficient
between x[n] and x[n− k],

ρxx[k] ≈ L

L− k
Rxx,norm[k] ≈ Rxx,norm[k]. (4.25)

It is a measure of a linear dependence. It is bounded by∣∣ρxx[k]
∣∣ ≤ 1 (4.26)

For noiseless data and a linear relation between the
samples, the prediction is perfect,

∣∣ρxx[k]
∣∣ = 1 and

Lmin = 0. On the other side, without any linear de-
pendence, ρxx[k] = ak = 0. This can be summarized
as

0 ≤Lmin(ak) ≤
L−1∑
n=0

x2[n] = Rxx[0] (4.27)

In matrix form (by Eq. (2.36)), the loss is given by

Lmin(ak) = eT e = yT y− akyT x (4.28)

The illustration of the correlation coefficient principles
is presented in Fig. 1.

MSE and RMSE The corresponding MSE and
RMSE metrics are given by

MSE(ak) = 1
L
Lmin(ak) (4.29a)

RMSE(ak) =
√

1
L
Lmin(ak) (4.29b)

21

0 100 200 300 400 500 600 700 800 900 1000

n

-10

-5

0

5

10
x
[n

]

0 5 10 15 20 25 30 35 40 45 50

k

0

0.5

1

R
x
x
[k

]

(a) ACF

-5 0 5 10

x[n]

-5

0

5

10

x
[n
!

1]

Rxx[1] = 0:95646

-5 0 5 10

x[n]

-5

0

5

10

x
[n
!

20
]

Rxx[20] = 0:40656

(b) x[n] vs. x[n − k]

0 20 40 60 80 100 120 140 160 180 200

-10

-5

0

5
Rxx[1] = 0:95317; Runbiased = 0:95412; a1 = 0:95332

Signal, y[n]
Prediction, ŷ[n] = a1y[n! 1]

0 20 40 60 80 100 120 140 160 180 200
-4

-2

0

2

4
e[n] = y[n]! ŷ[n]; RMSE = 1:0034

(c) Prediction

Figure 1: Illustration of the linear dependence between
x[n] and x[n− k].

Correlation time The correlation time, kc is the lag
where ρxx[kc] falls below a threshold,

ρxx[kc] = 0.5 or 0.1 or exp(−1) (4.30)

The predictability is assumed negligible for k > kc,

ρxx[k > kc] ≈ 0 (4.31)

The decision threshold depends on the field of applica-
tion. Note, correlation time is mostly only in physics
and engineering models.

4.1.4 Confidence Interval
Another way to quantify the “importance” of the coeffi-
cients is to use confidence bound.

General idea The ACF estimate at a given lag is
essentially a sample statistic derived from sums of prod-
ucts of random variables (the data values at different
time points). Under typical assumptions of station-
arity and weak dependence, these sample averages of
random variables invoke the Central Limit Theorem
(CLT). The CLT states that when you sum (or average)
a sufficiently large number of independent or weakly
dependent random variables with finite variance, the
resulting distribution approaches a normal distribution,
regardless of the variables’ original distribution.
In other words, the estimation of the ACF involves
averaging products like x[n]x[n− k] across many time
indices n. Provided the underlying process is stationary
and not too strongly dependent, these averaged terms
behave like sums of numerous random contributions.
As the sample size L grows large, the distribution of
the ACF estimate at each lag approaches normality by
virtue of the CLT. This is why the ACF at a given lag
can be approximated as a normally distributed random
variable in large-sample scenarios.

Derivation Since the estimated ACF at a given lag k
can be approximated as a normally distributed random
variable with zero mean and variance approximately 1

L
for large L, the 95% confidence bound is given by

Rxx,norm[k]±
√

2 erf(0.95)√
L

or Rxx,norm[k]± 1.96√
L

.

(4.32)
The value 1.96 comes from the properties of the standard
normal distribution. In a standard normal distribution
(mean 0, variance 1), approximately 95% of the area
under the curve lies within ±1.96 standard deviations
from the mean.

Interpretation If the estimated ACF value at a par-
ticular lag falls outside this range, it is statistically
significant at the 95% confidence level (i.e., unlikely to
be a result simply due to random chance). If it remains
within the interval, it suggests that the observed corre-
lation could be attributed to randomness in the data
rather than a meaningful linear relationship.

4.1.5 Auto-covariance
For simplicity, a zero-average, x̄[n] = 0, was assumed.
When the signals is non-zero mean, the subtraction
of signal average from the signal, x[n] = x[n] − x̄[n]

22

before auto-correlation calculation is termed as auto-
covariance.
Note, both auto-correlation and auto-covariance have
similar abbreviation, ACF. Typically, ACF is used for
auto-correlation, since majority of the signals are zero-
mean.
Tip:

• ACF calculation may be significantly speed-up with
appropriate algorithms and the bounded maximum
value of k ≤ kmax. The value of kmax may be
decided by Eq. (4.31).

4.1.6 Stationarity and Relation between
ACF and PSD

Stationarity definition For stationary signals, sta-
tistical properties like mean, variance, and ACF remain
constant over time segments. The direct outcomes are
the the signal is without trend and with constant vari-
ance.

Relation between ACF and PSD From the signal
processing point of view, the interpretation of a DFT of
some general random signal is non-trivial. For example,
phases θk of some random origin will be quite different
for each time-segment (or realization) of the signal. The
Wiener–Khinchin theorem states that the PSD (page
13, |Ak|2 values) of stationary random signal is the
Fourier transform of the ACF. Moreover, due to the
symmetry (Eq. (4.23)) of Rxx[k] it results θk = 0∀k.
This relation shows, that random signal also includes
spectral interpretation.

Interpretation The PSD shows where (in frequency)
the signal has most of its energy. Peaks in the PSD
correspond to frequencies at which the signal exhibits
strong periodic or quasi-periodic components.
Slowly decaying (long-memory) correlations in the time
domain often translate into a PSD that has more energy
at low frequencies (indicating slow variations in time).
Conversely, if the ACF shows periodicity, the PSD will
have distinct peaks at the corresponding harmonic fre-
quencies.
The ACF reveals how similar a signal is to itself at
different time shifts. A slowly decaying ACF indicates
strong long-term correlations, while a rapidly decaying
ACF suggests only short-range predictability.

4.2 AR(p) Model
Goal: Extend AR(1) to AR(p) model.

The auto-regressive (AR) signal model describes a signal
y[n] as a linear combination of its p previous samples

plus noise. Formally, an AR(p) model is

y[n] = a1y[n− 1] + a2y[n− 2] + · · ·+ apy[n− p] + ϵ[n]

=
p∑

m=1
amy[n−m] + ϵ[n]

(4.33)
and

ŷ[n] =
p∑

m=1
amy[n−m] (4.34)

where a1, . . . , ap are the AR model coefficient and p is
the model order chosen as hyper-parameter.
This model can be easily formulated in the matrix form
by using L sample of y[n],

ŷ[1]
ŷ[2]

...
ŷ[L− 1]

ŷ[L]

︸ ︷︷ ︸

ŷ

=

y[0] 0 0

y[1] y[0] 0
...

y[2] y[1] y[0]
y[3] y[2] y[1]

...
...

...
...

y[L− 2] y[L− 3] y[L− 2]
y[L− 1] y[L− 2] y[L− 3]

︸ ︷︷ ︸

X

a1
a2
...

ap

︸ ︷︷ ︸

a

,

(4.35)
where ŷ ∈ RL−1, X ∈ RL−1×p, a ∈ Rp.
The AR coefficients a can be found by a LS regression
that minimizes the MSE loss

L(ai) =
∑

n

(
y[n]− ŷ[n]

)2 = ∥y−Xa∥2
. (4.36)

The LS solution is straightforward,

a =
(

XT X
)−1

XT y. (4.37)

The corresponding dimensions are X ∈ RL×p, a ∈ Rp.
Note, the practical approach for evaluation of a is pre-
sented in the following section.

4.2.1 Yule-Walker Form
The resulting XT X matrix is termed (Toeplitz) auto-
correlation matrix and can be interpreted in terms of
auto-correlation values,

R = XT X

=

Ryy[0] Ryy[1] · · · Ryy[p− 1]
Ryy[1] Ryy[0] · · · Ryy[p− 2]

...
...

Ryy[p− 1] Ryy[p− 2] · · · Ryy[0]

 ,

(4.38)
where unscaled Ryy[k] is defined above. It is common
practice to ignore the changes in the vector lengths in
calculating ACF for the same time-shift for p≪ L, e.g.
diagonal matrix values are

Ryy[0] =
L−1∑
n=0

y2[n] ≈
L−2∑
n=0

y2[n] (4.39)

23

The vector XT y is also comprised of the corresponding
Rxx[k] values,

r = XT y =

Ryy[1]
Ryy[2]

...
Ryy[p]

 (4.40)

Using these formulations, the resulting coefficients are
given by a solution of a set of linear equations,

Ra = r (4.41)

and the result is similar to Eq. (4.37),

a = R−1r (4.42)

Squared error The resulting loss (squared error) is
given by (following Eqs. (2.36) and (4.24))

Lmin =
L−1∑
n=0

x2[n]−
p∑

k=1
ak

L−1∑
n=0

x[n]x[n− k]

= Rxx[0]−
p∑

k=1
akRxx[k]

(4.43)

Theoretically, higher value of p results in lower loss in
the presence of the sufficiently long correlation time
(Eq. (4.30)). Note, the accuracy drops for high values
of p to due to reduced accuracy of Rxx[p].

Example 4.1: Learn linear prediction of y[8] for p = 2
and signal y[0], y[1], . . . , y[7].

Solution:

y[0] 0 0
y[1] y[0] 0
y[2] y[1] y[0]
y[3] y[2] y[1]
y[4] y[3] y[2]
y[5] y[4] y[3]
y[6] y[5] y[4]

︸ ︷︷ ︸

X

a1
a2
a3

︸ ︷︷ ︸

a

=

y[1]
y[2]
y[3]
y[4]
y[5]
y[6]
y[7]

︸ ︷︷ ︸

y

(4.44)

Finding vector a values is (almost) trivial by a minimum
of the loss function of the form

L = ∥y−Xa∥2
. (4.45)

Once found, ŷ[8] = a1y[7] + a2y[6] + a3y[5].

The commonly adopted notation of the signal
model in most of the books and software pack-
ages is

p∑
m=0

ãmy[n−m] = ϵ[n] (4.46)

with ã0 = 1 and ãm = −am.

This definition follows discrete-time definition
and the corresponding Z-transform of all-pole
system. It also can be directly applied as a
denominator coefficients for filter command.

Biased signal The presence of a non-zero average
(bias) in the signal modifies the AR model formulation.
Instead of assuming a zero-mean process, a constant
bias term µ is introduced,

ŷ[n] = µ + a1y[n− 1] + a2y[n− 2] + · · ·+ apy[n− p] + ϵ[n]
(4.47)

In matrix form, this requires adding a column of ones
1M to the data matrix X, similarly to how it is done in
multivariate LS (Eq.(2.19)).
Tips:

• For computational and memory efficiency, the
Levinson-Durbin algorithm O

(
L2
)

is often used to

solve for AR coefficients 1, instead of direct O
(

L3
)

.
• The AR parameters a are also referred to as lin-

ear prediction coefficients (LPC), emphasizing their
role in predicting the current value from past sam-
ples.

• The auto-correlation matrix R is guaranteed to be
positive-definite (and, therefore, invertible) for ordi-
nary or biased definitions (normalization constants
reduce each other in (4.37)).

• Theoretically, the AR model coefficients can be
regularized to prevent overfitting.

• Although this section focuses on linear AR models,
nonlinear variants also exist, allowing modeling of
more complex dynamics.

• Note, there are other methods for LPC calcula-
tion, such as Burg’s method, as it is done in
librosa.lpc.

4.2.2 Moving Average
A simple special case of an AR-like model is the moving
average filter, where all coefficients are equal and sum
to one, ai = 1

p
. In this case,

ŷ[n] = 1
p

(
y[n− 1] + · · ·+ y[n− p]

)
= 1

p

p∑
m=1

y[n−m]
(4.48)

This is not strictly an AR model but shares the idea of
using past samples. It smooths the signal by averaging
the most recent p values.

1For example, solve toeplitz

https://librosa.org/doc/main/generated/librosa.lpc.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_toeplitz.html

24

4.2.3 Nearest Neighbor (Näıve)
A simple baseline is to use the immediate past sample
as the prediction with a1 = 1,

ŷ[n] = y[n− 1] (4.49)

This ”1-nearest neighbor” approach ignores signal dy-
namics and history. While often not very accurate, it
serves as a useful baseline to compare against more
sophisticated models.

4.2.4 Time-Domain Filtering
If we have two versions of a signal: one clean and another
noisy, {

y[n]
ỹ[n] = y[n] + ϵ[n]

(4.50)

we can use AR modeling to filter or “denoise” the noisy
version. The key idea is to construct the AR matrix X in
Eq. (4.35) from the shifted versions of ỹ[n] rather than
y[n]. By fitting an AR model the resulting coefficients
effectively learn how to reconstruct the clean signal from
the noisy input.
This approach sets the foundation for adaptive filter-
ing methods, where the model continuously adjusts
its parameters to best estimate the clean signal under
changing noise conditions.

Example 4.2: Evaluate the filter that removes a time-
shifted and attenuation replica of the signal (echo) of
the form

ỹ[n] = y[n] + αy[n− n0] (4.51)
which means the signal is contaminated by a delayed
and attenuated version of itself (an echo). The model
tries to learn the relationship

ŷ[n] = a1ỹ[n− 1] + a2ỹ[n− 2] + · · ·+ apỹ[n− p] (4.52)

With a suitably chosen model order p that includes
the lag n0, the model’s estimated coefficients can help
isolate and remove the echo term from the observed
signal, effectively filtering it out.

4.3 Linear Prediction of Sinu-
soidal Signal

Goal: This section demonstrates that a second-order
auto-regressive (AR(2)) model can represent a pure
sinusoidal signal perfectly, predicting it without error
from just the two previous samples.

Consider the noise-free sinusoidal signal

y[n] = cos(ω0n) (4.53)

For simplicity, phase is initially taken as zero. We aim
to model it with

ŷ[n + 1] = a0y[n] + a1y[n− 1] (4.54)

The corresponding loss is

L(a0, a1) =
∑

n

(
y[n + 1]− ŷ[n + 1]

)2

=
∑

n

(
y[n + 1]− a0y[n]− a1y[n− 1]

)2

(4.55)
The required minimum is given by a solution of a system
of normal equations,

∂

∂a0
L(a0, a1) = 0

∂

∂a1
L(a0, a1) = 0

(4.56)

The resulting equations are
2
∑

n

(
y[n + 1]− a0y[n]− a1y[n− 1]

)
· (−y[n]) = 0

2
∑

n

(
y[n + 1]− a0y[n]− a1y[n− 1]

)
· (−y[n− 1]) = 0

(4.57)
These equations involve sums of trigonometrical func-
tions. Using standard trigonometric identities and as-
suming a large number of samples L, these sums simplify
due to the oscillatory nature of sine and cosine functions.
Some important quantities are
y[n + 1]y[n] = cos

(
ω0[n]

)
cos
(
ω0[n + 1]

)
= cos(ω0n)

[
cos(ω0) cos(ω0n)− sin(ω0) sin(ω0n)

]
= cos(ω0) cos2(ω0n)− sin(ω0) cos(ω0n) sin(ω0n)

(4.58)
For 1/ω0 ≪ L, the common assumption is∑

n

cos2(ω0n) ≈ L

2∑
n

cos(ω0n) sin(ω0n) ≈ 0

∑
n

y[n + 1]y[n] ≈ L

2 cos(ω0)

≈
∑

n

y[n]y[n− 1]∑
n

y2[n] =
∑

n

cos2(ω0n)

≈
∑

n

y2[n− 1] ≈ L

2∑
n

y[n + 1]y[n− 1] = 1
2
∑

n

cos(2ω0n) + 1
2
∑

n

cos(2ω0)

≈ L

2 cos(2ω0)

The approximations show that sum terms reduce to
manageable forms. Substituting these approximations
into the normal equations leads to a system

a0
L

2 + a1
L

2 cos(ω0) = L

2 cos(ω0)

a0
L

2 cos(ω0) + a1
L

2 = L

2 cos(2ω0)
(4.59)

25

Solving these two linear equations for prediction coeffi-
cients yields

a0 = 2 cos(ω0)
a1 = −1

(4.60)

This result is exact in the idealized scenario of an infinite,
noise-free sinusoid.
f the signal had a phase θ,

y[n] = cos(ω0n + θ) (4.61)

the same coefficients still apply, only the initial condi-
tions (the first two samples) differ,

y[0] = cos(θ)
y[1] = cos(ω0 + θ).

(4.62)

The AR(2) model still perfectly represents the sinu-
soidal sequence. The example of the resulting signal is
presented in Fig. 2.

0 5 10 15 20

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

p
li
tu

d
e

Prediction
Theory

Figure 2: Oscillator example.

Results interpretation:
• Any complex signal can be thought of as

a sum of sinusoids. In theory, each sinu-
soidal component can be perfectly modeled
by an AR(2) process corresponding to its
frequency.

• In practice, signals are finite in length and
often corrupted by noise. Under these re-
alistic conditions, perfect prediction is not
achievable, and the AR model’s accuracy di-
minishes as noise and non-idealities increase.
The prediction horizon is limited even for a
periodic low-noise signals.

• Nevertheless, this analysis provides a foun-
dational insight: sinusoids have a natu-
ral AR(p) representation, explaining why
AR(p) models are often effective in cap-
turing periodic components of signals for

a small-step prediction.

4.4 Partial auto-correlation func-
tion

Goal: The partial autocorrelation function (PACF)
measures the correlation between a time series and its
lagged values after removing the influence of all shorter
lags. In other words, the PACF at lag k shows the direct
effect of y[n − k] on y[n], excluding any intermediary
correlations through lags less than k.

The partial autocorrelation at k is the correlation that
results after removing the effect of any correlations due
to the terms at shorter lags,

x[0], x[1], x[2], . . . , x[j − 1]︸ ︷︷ ︸
partial out

, x[j], x[j + 1], . . .

The PACF at lag k can be extracted by fitting an AR(k)
model and observing the coefficient associated with
y[n− k] in this model2. For each k,

ŷk[n] = ϕk,1y[n−1]+ϕk,2y[n−2]+...+ϕk,ky[n−k]+ϵ[n]
(4.63)

The k-th partial autocorrelation, β[k] is ϕk,k, the coef-
ficient of y[n − k] in the AR(k) model. Each of these
AR(k) models can be solved using standard LS methods.
The algorithm is as follows:

• For the first value of PACF, β[1], fit AR(1) model

ŷ1[n] = ϕ1,1y[n− 1] + ϵ[n] (4.64)

and the coefficient β[1] = ϕ̂1,1 is given by the model
solution, a1 (Eq. (4.5)).

• For the second order PACF, it would be the β[2] =
ϕ2,2 coefficient of AR(2) model,

ŷ2[n] = ϕ2,1y[n− 1] + ϕ2,2y[n− 2] + ϵ[n] (4.65)

• Continue this process up to the desired lag, each
time extracting the coefficient of the highest-order
lag as the PACF value.

Tip:
• While the ACF reflects both direct and indirect

correlations (where an earlier lag may influence a
later lag through intermediate values), the PACF
isolates the direct contribution of each individual
lag once all shorter-term effects are factored out.

• Though conceptually the PACF is obtained by fit-
ting multiple AR models, practically more efficient
algorithms like the Levinson-Durbin recursion can
compute these values quickly and without having
to solve a new LS problem at every step.

2Stackexchange

https://stats.stackexchange.com/a/493848/52547

26

4.4.1 Relation between PACF and
AR(p)

The order p of AR(p) model is related to the statisti-
cally significant (over a confidence bound) coefficients
of PACF. Observing where the PACF cuts off helps
identify the appropriate order p for AR(p) model fitting.
An example of a synthetic signal analysis with p = 2 is
presented in Fig. 3.

-1

-0.5

0

0.5

1

S
am

p
le

A
u
to

co
rr

el
at

io
n Sample Autocorrelation Function

0 2 4 6 8 10 12 14 16 18 20

Lag

ACF

Con-dence Bound

-1

-0.5

0

0.5

1

S
am

p
le

P
ar

ti
al

A
u
to

co
rr

el
at

io
n

Sample Partial Autocorrelation Function

0 2 4 6 8 10 12 14 16 18 20

Lag

PACF

Con-dence Bound

Figure 3: ACF and PACF of AR(2) signal. Note short
PACF and long ACF plots.

4.5 MA model
Goal: The moving average (MA) model expresses the
current output y[n] as a linear combination of current
and past noise terms. Unlike the AR model, which relies
on past values of the output, the MA model directly
models the output as filtered white noise.

Another model is the moving average model (MA),
where the output is a linear combination of the noise
values at the different times [6, Example 4.3, pp. 90]

y[n] = ϵ[n] + b1ϵ[n− 1] + · · ·+ bqϵ[n− q] (4.66)

Because the noise terms ϵ[n] are not directly observable
(unlike the past outputs in AR modeling), deriving a
closed-form solution for MA parameters through simple
linear regression is not as direct and is not presented
here. 3 While the underlying theory is well-established,
practical estimation of MA parameters often involves
advanced numerical methods rather than a simple closed-
form solution.

4.5.1 MA and AR relations
There exists a duality between AR and MA processes
in terms of infinite expansions:

3e.g. A simple Estimator of an MA(1) Models.

Presenting AR(p) as MA(∞) An AR model can
be represented as an infinite MA model when the autore-
gressive parameters are stable. Consider the recursive
simple AR(1),

y[n] = a1y[n− 1] + ϵ[n]
= a1(a1y[n− 2] + ϵ[n− 1]) + ϵ[n]
= a2

1y[n− 2] + a1ϵ[n− 1] + ϵ[n]
= a3

1y[n− 3] + a2
1ϵ[n− 2] + a1ϵ[n− 1] + ϵ[n]

(4.67)
Continuing this process indefinitely and assuming sta-
bility, a1 < 1, lim

k→∞
ak

1 → 0, we have

y[n] = ϵ[n] + a1ϵ[n− 1] + a2
1ϵ[n− 2] + a3

1ϵ[n− 3] + · · ·

=
∞∑

i=0
ai

1ϵ[n− i]

(4.68)
that it is MA(∞) model, where the coefficients of the
MA representation are the infinite geometric sequence
powers of a1.

Presenting MA(1) as AR(∞) An MA(1) process
is given by

x[n] = ϵ[n] + b1 ϵ[n− 1]. (4.69)

We can express the process as an infinite-order AR(∞)
model.
First, note that we can write

ϵ[n] = x[n]− b1 ϵ[n− 1]. (4.70)

Substituting for ϵ[n− 1] recursively, we have

ϵ[n] = x[n]− b1
(
x[n− 1]− b1 ϵ[n− 2]

)
= x[n]− b1 x[n− 1] + b2

1 ϵ[n− 2]

= x[n]− b1 x[n− 1] + b2
1
(
x[n− 2]− b1 ϵ[n− 3]

)
= x[n]− b1 x[n− 1] + b2

1 x[n− 2]− b3
1 ϵ[n− 3]

...

=
∞∑

i=0
(−b1)i x[n− i].

(4.71)
Rearranging, the ARAR(∞) representation becomes

x[n] = ϵ[n] +
∞∑

i=1
(−b1)i x[n− i]. (4.72)

Note the invertibility condition, |b1| < 1.

Interpretation AR and MA are not mutually exclu-
sive categories. A stable AR process can be seen as a
special case of an infinite MA, and a stable MA can be
thought of as an infinite AR.

https://rpubs.com/khoalemaiu/867254

27

4.5.2 The relation between MA(q) and
ACF

The MA(q) model has a distinctive fingerprint in terms
of its ACF; it is nonzero for up to lag q and essentially
zero afterward (except for sampling and noise effects).
Just as the partial autocorrelation function (PACF)
helps determine the order p of an AR(p) process by
pinpointing where its PACF cuts off (Sec. 4.4.1), the
ACF helps identify the order q of an MA(q) process.
An example of a synthetic MA(4) signal analysis is pre-
sented in Fig. 4. After lag 4, the ACF values remain
within the confidence bounds, essentially zero, suggest-
ing the data arise from an MA(4) process.

0

0.5

1

S
am

p
le

A
u
to

co
rr

el
at

io
n Sample Autocorrelation Function

0 2 4 6 8 10 12 14 16 18 20

Lag

ACF

Con-dence Bound

-0.5

0

0.5

1

S
am

p
le

P
ar

ti
al

A
u
to

co
rr

el
at

io
n

Sample Partial Autocorrelation Function

0 2 4 6 8 10 12 14 16 18 20

Lag

PACF

Con-dence Bound

Figure 4: ACF and PACF of a synthetic MA(4) signal.
Note short ACF and long PACF plots.

4.6 ARMA
Goal: The ARMA model extends the concepts of AR
and MA models by combining their elements to capture
more complex dynamics.

The ARMA(p,q) model is given by

ŷ[n] = a1y[n− 1] + · · ·+ apy[n− p]
+ b1ϵ[n− q] + · · ·+ bqϵ[n− q] + ϵ[n]

=
p∑

i=1
aiy[n− i] +

q∑
k=0

bkϵ[n− k]
, (4.73)

where b0 = 1 by definition.
One of the ways to describe MA part of ARMA, is that
MA uses to model the difference unexplained by AR
model,

ŷ[n]−
p∑

i=1
aiy[n− i] =

q∑
k=0

bkϵ[n− k] (4.74)

As with AR models (Eq. (4.47)), a constant bias µ can
be included,

ŷ[n] =
p∑

i=1
aiy[n− i] +

q∑
k=0

bkϵ[n− k] + µ (4.75)

Chapter 5

Models Characterization and Tuning

The goal is:
• Estimate some metrics of the model and understand

the limitations on this estimate.
• Trial and error approach.
• Understand the limitations on the effectiveness of

the model’s ability to make inferences on unfamiliar
data.

5.1 Polynomial model
Goal: • Extension of a linear model “engine” to poly-

nomial models. The polynomial model is very flex-
ible, i.e. due to the Taylor expansion theorem.

• Illustration of generalization principle.

The N -degree uni-variate polynomial model is

ŷ = f(x; w) = w0 + w1x + w2x2 + · · ·+ wN xN

=
N∑

j=0
wjxj

(5.1)

The corresponding prediction is

ŷk =
N∑

j=0
wjxj

k (5.2)

This problem is linear by change of variables, zkj = xj
k,

ŷk =
N∑

j=0
wjzkj (5.3)

Using matrix notation (also termed Vandermonde ma-
trix),

X =

1 x1 x2

1 · · · xN
1

1 x2 x2
2 · · · xN

2
...

...
...

1 xM x2
M · · · xN

M

 (5.4)

the weights values are straightforward.

5.2 Cross-validation
Goal: Trial and error approach to quantify generaliza-
tion performance and overfitting-underfitting balance.

The cross-validation is also termed performance assess-
ment.

• First step of any following technique is resample
the dataset into the random order.

Big dataset (tens of thousands):
train/validation/test

Split into three distinctive datasets:
• Training (50-80%): used for learning of model pa-

rameters, e.g. weights w.
• Validation (10-25%): used for assessment of model

hyper-parameters influence.
• Test (10-25%): performance assessment that is sup-

posed to be an estimation for the generalization
error.

Medium datasets (hundreds to thousandths): k-
fold

Steps:
• Data Splitting: First, the available dataset is di-

vided into k subsets of approximately equal size.
These subsets are often referred to as “folds.”

• Model Training and Evaluation: The model is
trained k times. In each iteration, one of the subsets
is used as the test set, and the remaining k− 1 sub-
sets are used as the training/validation sets. This
means that in each iteration, the model is trained
and validated on a different combination of training
and test data.

• Performance Evaluation: After training the model
k times, the performance of the model is evaluated
by averaging the performance metrics obtained in
each iteration.

Usually, k is defaulted to 5 or 10.

29

k-fold

Missing
figure

Very small datasets (tens to hundreds): one-hold-
out

Uses k-fold with k = M , which means that each fold
will contain only one data point.

5.3 Overfitting and underfitting
Goal: Two common and fundamental problems in ma-
chine learning.

Overfitting when model is too complex, i.e. have too
many parameters.

• Too many parameters relative to the number of ob-
servations. Ideally, we want an order of magnitude
more observations than parameters.

• Follow the training data very closely.
• Fail to generalize well to unseen data.

Underfitting happens when a model is too simple.
• Unable to capture the underlying pattern of the

data and hence misses the trends in the data.
• Performs poorly on the training data and fail to

generalize.
Overfitting and underfitting are complimentary and bal-
ancing between them is key to building robust machine
learning models that perform well on new, unseen data,
i.e. generalize well.

Hyper-parameter optimization The order N is
the hyper-parameter of the polynomial model. Selecting
the most appropriate hyper-parameters value is called
hyper-parameter optimization.

5.3.1 Summary
Model performance insights from the differences between
train and test datasets and undefitting-overfitting trade-
off are presented in Fig. 1(a).

5.4 Generalization
Without loss of generality, and for simplicity, uni-variate
definition is used. As we already stated, our data is
a set of (xk, yk) pairs. Let’s assume that the dataset
(x, y) are M samples drawn from some (unknown) joint
probability distribution, (x, y) ∼ D. In practice, the
value of M is (very) limited.

0 0.2 0.4 0.6
0

0.5

1

1.5

2
N=1

0 0.2 0.4 0.6
0

0.5

1

1.5

2

N=3
y = w0 + w1x + w2x

2 + w3x
3

Train
Test

0 0.2 0.4 0.6
0

0.5

1

1.5

2
N=6

0 0.2 0.4 0.6
0

0.5

1

1.5

2
N=10

(a) Polynomial of the different order.
square error

optimal

test

train

complexity

under over

(b)

Figure 1: (a) Overfitting and underfitting polynomial
example. (b) Increasing model complexity improves the
prediction error for training data, but from a certain
point of transitioning from underfitting to overfitting,
it increases the error for test data.

When we use some data to “train” some model, f(X; w),
the question is, how can we assess the performance on
other points from D.
Generalization: The difference between performance
metrics over data that is used to train model (train
performance) and performance metric over all (theoreti-
cally) possible points from D (generalization error),

pgen = ED[J(y, ŷ)]. (5.5)

The problem is that the distribution D is unknown
in most of the practical applications. In the following,
method to approximate the generalization probability
will be discussed.
The LS example performance is presented in Fig. 2.
Notes:

• Better generalization ⇒ smaller difference between
model performance and generalization performance.

• Can be evaluated theoretically only for very simple
models and datasets.

• Require some practical assessment tools, as follows.

30

5 10 15 20 25 30
M

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
M
SE

Train
General
Theory (<2)

Figure 2: Performance of LS for different train dataset
size. The difference between the results in Fig. 2.2 and
the “realistic” performance.

5.5 Takeaways

Chapter 6

Overfitting Management

Goal: Typically, the most applied models (beyond the
basic linear one) in their general form are overfit data.
The goal is to provide the list of the methods that are
used to manage the overfit.

6.1 Dataset size
Goal: Dataset level in Fig. 1.2.

Adding data usually improves the performance for an
overly complex system as presented in Fig. 1.

complexity

square error

optimal

test

train

under over

Figure 1: Bias-variance trade-off for polynomial regres-
sion.

6.2 Regularization
Goal: • Tweak the bias-variance trade-off by penal-

izing weights size.
• Loss function level in Fig. 1.2.
• Introduces new hyper-parameter that have to be

tuned.

Regularization: Penalty to the loss function

Lnew = L + λg(w) (6.1)

λ is termed regularization parameter.
L1-regularization: Special case of g(·), where

g(w) = λ

2M
∥w∥1 = λ

2M

N∑
i=1
|wi| (6.2)

L2-regularization: Special case of g(w) = 1
2M
∥w∥2,

Lnew = L + λwT w λ

2M

N∑
i=1

w2
i (6.3)

where vector of weights w does not include w0 weight.
Moreover, when normalization is used, no w0 weight is
needed.

6.2.1 Ridge Regression
Ridge regression: L2-regularized linear regression.

L(w) = 1
2M
∥y−Xw∥2 + λ

2M
∥w∥2︸ ︷︷ ︸∑N

i=1
w2

i

= 1
2M

(y−Xw)T (y−Xw) + λ

2M
wT w

(6.4)

Derivative

∇L(w) = 1
M

(
−XT (y−Xw) + λw

)
= 0 (6.5)

Solution

−XT (y−Xw) + λw = −XT y + XT Xw + λw = 0
XT y = XT Xw + λw

w =
(

λI + XT X
)−1

XT y, (6.6)

Can be viewed as special case of linear regression, of
the form

ỹ = X̃w
y
0
...
0

 =

− X −√
λ 0

. . .
0

√
λ

w1
...

wN

+ w0 (6.7)

GD Solution

wn+1 = wn −
α

M

[
XT (Xwn − y) + λwn

]

32

= wn

(
1− α

M
λ

)
− α

M
XT (Xwn − y) (6.8)

The α value is chosen such that

0.99 ≳

(
1− α

M
λ

)
≳ 0.95 (6.9)

6.2.2 General aspects

Figure 2: Illustration of λ influence on model fitting.

Slope interpretation Higher value of λ reduces
(mostly) the highest slopes (weights wi) ⇒ the depen-
dency on the parameters with these weights is reduced.

Polynomial interpretation One-dimensional
dataset (xi, yi) with nonlinear mapping xi =
[xi, x2

i , . . . , xN
i]. The resulting coefficients wi will be

significantly higher for higher i (Fig. 3). Reducing
them results in smooth ŷ prediction.

0 0.2 0.4 0.6
0

0.5

1

1.5

2
N=1

w2 = 2:912

0 0.2 0.4 0.6
0

0.5

1

1.5

2

N=3
y = w0 + w1x + w2x

2 + w3x
3

w3 = 5:6426

Train
Test

0 0.2 0.4 0.6
0

0.5

1

1.5

2
N=6

w6 = 8414:7354

0 0.2 0.4 0.6
0

0.5

1

1.5

2
N=10

w10 = !11579400:5357

Figure 3: Illustration of weight grows with the polyno-
mial model complexity.

Eigenvalues interpretation The this calculation
limits the smallest eigenvalues to > 1

λ and thus improve
the numerical stability.

0 0.1 0.2 0.3 0.4 0.5 0.6

x

0

0.5

1

1.5

y

y =
PN

n=0 wnx
n

Train
Theory, y = f(x)
Fit (N = 9), wmax = 7:68e + 06
Fit (N = 3), wmax = 8:89
Regularized (N = 9), wmax = 1:47
Test

Figure 4: Illustration of regularization influence on the
polynomial model.

0 0.002 0.004 0.006 0.008 0.01

6

0.0113

0.0114

0.0115

0.0116

0.0117

0.0118

0.0119

0.012

0.0121
M

S
E

MSE Loss - 6 dependency

Figure 5: Dependence of MSE on λ for regularization in
Fig. 4. Overfitting on the left (λ→ 0) and undefitting
on the right.

6.3 Noisy deterministic func-
tion interpretation and bias-
variance trade-off

The general model beneath the dataset model is

yi = h(xi) + ϵi, (6.10)

where f(x) is some unknown function and ϵ is some
random noise with unknown distribution, zero-mean
and variance of σ2 (E [ϵ] = 0, Var[ϵ] = σ2).
Prediction is by ŷi = f(xi; θ) and the resulting MSE

33

λ

bias2

variance

square error

λoptimal

Normal equation

Ridge regression

(a) Performance trade-off
square error

optimal

test

train

under over
λ

(b) Train/test

Figure 6: Ridge regression: visualization of bias-variance
trade-off.

loss of the model is

L(y, ŷ) = E
[
(ŷ − y)2

]
= 1

M

M∑
i=1

(ŷi − yi)2

= E
[
ŷ2
]
− 2E [y] E [ŷ] + E

[
y2
]

E
[
ŷ2
]

= Var[ŷ] + E2[ŷ]

E [y] = E
[
h(x)

]
= h(x)

E
[
y2
]

= E
[
(h(x) + ϵ)2

]
= 1

M

M∑
i=1

(
h(xi) + ϵi

)2

= E
[
h2(x)

]
+ 2E

[
h(x)

]
���*

0
E [ϵ] + E

[
ϵ2
]

= E
[
h2(x)

]
+ σ2

= h2(x) + σ2

L = Var[ŷ] + E2[ŷ]− 2h(x)E [ŷ] + h2(x) + σ2

=
(
E [ŷ]− h(x)

)2︸ ︷︷ ︸
bias2

+ Var[ŷ]︸ ︷︷ ︸
variance

+ σ2︸︷︷︸
noise

(6.11)
The visualization of this principle for polynomial regres-
sion is presented in Fig. 3. Underfitting is low variance

N

bias2

variance

MSE

Noptimal

Figure 7: Bias-variance trade-off (for polynomial regres-
sion).

Variance

Bias

Figure 8: Illustration of bias-variance trade-off.

and high bias, and overfitting is high variance and low
bias.
The best model performance has inherent bias-variance
trade-off. However, some models can have high bias and
high variance simultaneously, as illustrated in Fig. 4.

6.4 Normalization and Standard-
ization

Goal: Data pre-processing level in Fig. 1.2. Used for
multi-variate data.

Values in different columns in X (vectors xj) may be
different by orders magnitudes, i.e. ∥xi∥ ≫

∥∥xj

∥∥. This
results in:

• Some columns have significantly higher influence
on ŷ.

• Numerical instabilities.
Standardization: Mapping all the input values such
that they follow a distribution with zero mean and unit
variance.

zstd = x− x̄
σx

, (6.12)

where

x̄ = 1
M

M∑
j=1

xj

34

σ2
x = 1

M

M∑
j=1

(
xj − x̄

)2

Implementation steps:

1. On train dataset, evaluate x̄ and σx.

2. Apply normalization on train dataset, using x̄
and σx.

3. Apply normalization on test dataset, using same
x̄ and σx (no recalculation).

When normalization is applied to y, the output of the
model is transformed back, ŷ = ŷstdσy + ȳ.
Example: zscore command in Matlab.
Note, standardization of both X and y results in w0 = 0
and removes the requirement for 1 column in X.
Normalization: Mapping all values of a feature to be
in the range [0, 1] by the transformation

xnorm = x− xmin

xmax − xmin
(6.13)

Implementation steps for normalization are similar to
standardization.

Beware, normalization and standardization are
used interchangeably.

Chapter 7

Logistic Regression

Goal: Binary (two-class) classification with linear deci-
sion boundary.

For binary classification, each entry of vector y is
yj ∈ {0, 1}.

7.1 Generalized Binary Linear
Classification Models

Generalized linear model: Generalized linear model
is the model that applies some (non-linear) function
g(·) : R → R on wT xi,

ŷi = g(wT xi) (7.1)

For classification, y ∈ {0, 1}.

20 30 40 50 60 70 80 90 100

x1

20

30

40

50

60

70

80

90

100

x
2

y = 1
y = 0
Errors
Decision Boundary

Figure 1: An example of linear classification boundary.

Example 7.1: Examples of a function g(x) are,

g(x) = x basic linear model (7.2)

σ(x) = 1
1− exp(x) sigmoid (7.3)

0 ≤ σ(x) ≤ 1

7.2 Basic Linear Model
The linear regression can be used for classification. First,
regression is evaluated. Than, the regression outputs
are compared to a predefined threshold, e.g. 0.5.

ỹ = Xw (7.4)

ŷj =

1 ỹj >

1
2

0 ỹj <
1
2

(7.5)

Example

XT =
[

1 1 · · · 1 1 · · · 1
10 11 · · · 19 20 · · · 29

]
yT =

[
1 1 · · · 1 0 · · · 0

]
The results are presented in Fig. 2.

10 12 14 16 18 20 22 24 26 28 30

x1

0

0.5

1 ŷ
Decision
Boundary

10 20 30 40 50 60 70

x1

0

0.5

1 ŷ
Decision
Boundary

Figure 2: 1D synthetic example of classification by linear
regression.

Summary

• ỹ may be (significantly) higher than 1 and lower
than 0.

• Outlier has a dramatic influence.

36

7.3 Logistic Model
Goal: Binary classification model with:

• Linear model
• Outliers handling
• Probabilistic interpretation

Logistic regression is one of the generalized linear clas-
sification models that is based on sigmoid function.
Sigmoid function:

σ(x) = exp(x)
1 + exp(x) = 1

1 + exp(−x) (7.6)

The function is visualized in Fig. 3.

-5 0 5
x

0

0.2

0.4

0.6

0.8

1

<(x) =
1

1 + exp(!x)

Figure 3: Plot of a sigmoid function.

Logistic regression:

ŷi = σ(wT xi) = 1
1 + exp

(
−wT xi

) (7.7)

ŷ = σ(Xw) (7.8)

Loss function: MSE loss has no closed-form solution
and has multiple local minimums⇒ not used.

L(·) = 1
2M
∥ŷ− y∥2 (7.9)

Loss function is not necessary metric.

7.4 Cross-entropy loss
Goal: Probabilistic loss.

The resulting value of ŷ = fθ(X) has probabilistic
interpretation and L(ŷ, y) quantifies a distance between
target and output distributions. Typically, the distance
metrics between probability density functions (PDFs)
are used.

7.4.1 Entropy
Entropy: For the discrete distribution
P =

{
pi = Pr[X = xi]

}
, the entropy is given by

H(P) = −
∑

i

pi log(pi) (7.10)

10 12 14 16 18 20 22 24 26 28 30

x1

0

0.5

1 y
Decision
ŷ = <(Xw)

10 20 30 40 50 60 70

x1

0

0.5

1 y
Decision
ŷ = <(Xw)

Figure 4: 1D synthetic example of classification by linear
regression.

The sign depends on the context of the definition (some-
times + is used).
Entropy is a measure of the uncertainty associated with
a given distribution, P . It has the maximum value for
pi = pj ∀i, j and drops down for any other combinations.
Coding interpretation: The entropy is an information
theory measure. One of the interpretations of entropy
(with base-2 logarithm and ’-’ sign) is the theoretical
limit on the average number of bits needed to compress
the outcomes of the distribution p. Numerical example:

p1 = p2 = 1
2 ⇒ H(p) = −2 · 1

2 log2

(
1
2

)
= 1

p1 = 1
10 , p2 = 9

10 ⇒ H(p) = − 1
10 log2

(
1
10

)
− 9

10 log2

(
9
10

)
≈ 0.4690

Numerical example:
• Equal probabilities:

– Consider the transmission of {A, B, C, D} se-
quences over a binary channel. If all 4 letters
are equally likely (25%) probable, pi = 0.25.

– The possible code is {00, 01, 11, 10}. One can
not do better than using two bits to encode
each letter.

– H(P) = −4 ∗ 1
4 log2

(
1
4

)
= 2

– The lowest possible coding rate is achieved.
• Unequal probabilities example in Table 1:

– Average coding rate is∑
i

lengthi · pi = 1 ∗ 0.7 + 2 ∗ 0.26 + 3 ∗ 0.02 + 3 ∗ 0.02

= 1.34

– The theoretical lowest coding rate.

H(P) = −0.7 log2(0.7)− 0.26 log2(0.26)
−0.02 log2(0.02)− 0.02 log2(0.02) ≈ 1.0912

37

Table 1: Unequal probabilities example.

Word Probability,
pi

Codeword
Ci

Codeword
length,
lengthi

A 0.7 0 1
B 0.26 10 2
C 0.02 110 3
D 0.02 111 3

E[Y] =
∑

i yi Pr[Y = yi]

7.4.2 Cross-entropy
Cross-entropy: For two discrete distributions, p and
q, the cross-entropy is given by

H(p, q) = ±
∑

i

pi log(qi) (7.11)

The minimum value of P (p, q) is when p = q, and as a
consequence H(p, q) = H(p).
Coding interpretation: One of the interpretations
of entropy (with base-2 logarithm and ′−′ sign) is the
theoretical limit on the average number of bits that are
required to encode distribution p with the theoretically
optimal code for q. Numerical example: Let’s encode
{A, B, C, D} with probabilities qi =

{
1
4 , 1

4 , 1
4 , 1

4

}
. In

this case, one of the optimal coding options is to use
two-bit binary code. Now, let’s encode pi =

{
1
2 , 1

2 , 0, 0
}

with this code. The resulting quantities are H(p) = 1
and H(p, q) = 2 which means that instead of optimal
1-bit code for p, the 2-bit code is required if the code
optimal for q is used to encode p.
Notes:

• lim
x→0

x log(x)→ 0
• For a loss function, typically e-base logarithm is

used.
• Maximum likelihood estimation (MLE) has the

same minimum for θ.

7.4.3 Binary Cross-Entropy (BCE)
The visualization of BCE of the form

H(p, q) = −p0 log(q0)− p1 log(q1) (7.12)

is presented in Fig. 5 For example, when p0 = 0
and p1 = 1 − p0 = 1, the expression reduces to
H(p, q) = log(q1), q1 ∈ [0, 1].

7.4.4 Binary Cross-Entropy (BCE) Loss
Goal: Minimum cross entropy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

H
(p

,q
)

p0 = 0; p1 = 1; H(p; q) = !p0 log(q0)! p1 log(q1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q0; q1 = 1! q0

0

1

2

3

4

H
(p

,q
)

p0 = 1; p1 = 0

Figure 5: Illustration of BCE (Eq. (7.13).

For example, for a single decision for y = 1 in this
example, we would like that fθ(x)→ 1,

p0 = Pr(y = 0) = 1− y

p1 = Pr(y = 1) = y

q0 = Pr(ŷ = 0) = 1− fθ(x)
q1 = Pr(ŷ = 1) = fθ(x)

H(p, q) = −p0 log(q0)− p1 log(q1)
= −(1− y) log

(
1− fθ(x)

)
− y log

(
fθ(x)

)
The discussion is symmetric for y = 0, fθ(x)→ 0.
BCE loss: Binary cross-entropy (BCE) loss function

L(y, ŷ) = −(1− y) log(1− ŷ)− y log(ŷ) (7.13)

For multi-valued vector y the loss is the average (or
sum) over all yi elements,

L = − 1
M

M∑
j=1

(1− yi) log(1− ŷi) + yi log(ŷi)

= − 1
M

[
(1− y) log(1− ŷ) + y log(ŷ)

] (7.14)

Properties: The BCE loss is:
• Global minimum.
• Continuous, differentiable and convex, i.e. appro-

priate for GD minimization.

7.5 BCE Loss for Logistic Regres-
sion

Probabilistic prediction:

p(y = 1|x, w) = σ(x̃w)
p(y = 0|x, w) = 1− σ(x̃w)

(7.15)

38

Classification decision: ŷ ≶ 1
2 Vector notation

L = 1
M

[
−yT log

(
σ(Xw)

)
− (1− y)T log

(
1− σ(Xw)

)]
(7.16)

The first order gradient does not have a closed-form
solution.

∇wL(w) = 1
M

XT
(
σ (Xw)− y

)
(7.17)

However, it can be easily found by GD minimization
that involves only vector and matrix operations:

wn+1 = wn − α∇wL(w) (7.18)

20 30 40 50 60 70 80 90 100

x1

20

40

60

80

100

x
2

y = 1 (75% > y 6 50%)
y = 1 (100% 6 y 6 75%)
Decision Boundary

20 30 40 50 60 70 80 90 100

x1

20

40

60

80

100

x
2

y = 0 (25% < y < 50%)
y = 0 (0% 5 y 5 25%)
Decision Boundary

Figure 6: Example of σ(Xw) ≥ 0.75 and σ(Xw) ≤ 0.25
(see also Fig. 1).

Decision boundary

Another interpretation of Eq. (??) is

ŷ =
{

1 xT w ≥ 0
0 xT w < 0

(7.19)

The value of xT w = w0 + w1x1 + w2x2 + · · · = 0 is the
decision boundary. Remainder for the line equation,

xT y = ∥x∥∥y∥ cos(θ) (7.20)

x ⊥ w⇒ θ = 90◦ ⇒ xT w = 0
Important properties of the logistic regression with BCE
loss function:

• Probabilistic interpretation of the output.
• Regularization can be applied,

Lnew = L(y, ŷ) + λ

2M

N∑
i=1

w2
i (7.21)

• Mapping functions or kernels can be applied. For
example, for polynomial mapping

φ(x1, x2) = ⟨1, x1, x2
1, x2, x2

2, x1x2, x2
1x2, x1x2

2, x2
1x2

2⟩

40 50 60 70 80 90

x1

40

50

60

70

80

90

x
2

y = 1
y = 0
Boundary

(a) Example from Figs. 1 and 6.

-1 -0.5 0 0.5 1 1.5

x1

-1

-0.5

0

0.5

1

1.5

x
2

y = 1
y = 0
Errors
Boundary

(b) More challenging example.

Figure 7: Example polynomial φ(x1, x2) mapping.

7.6 k-NN
Uses k nearest neighbors for a decision.
Different distance metrics, some of them with additional
hyper-parameter(s). For example:

• Euclidean distance metric,

d(a, b) = ∥a − b∥

=
√

(a1 − b1)2 + (a2 − b2)2 + · · ·+ (aM − bM)2

(7.22)
• City block (Manhattan) distance

d(a, b) =
M∑

j=1

∣∣aj − bj

∣∣
= |a1 − b1|+ · · ·+ |aM − bM |

(7.23)

• Minkowski distance with (hyper) parameter p,

d(a, b) = p

√√√√ M∑
j=1

∣∣aj − bj

∣∣p (7.24)

For the special case of p = 1 the Minkowski dis-
tance gives the city block distance. For p = 2, the

39

Minkowski distance gives the Euclidean distance.
Tie-breaking (same number of neighbors) algorithm for
k > 1 neighbors:

• Random selection.
• Use the class with the nearest neighbor.

Summary
• Fair baseline performance.
• High inference complexity. It requires M distance

calculations for each new point (e.g., logistic regres-
sion uses w vector.)

• Can not handle outliers.
• 100% training accuracy.
• Normalization is required!
• Two hyper-parameters: k and distance metric.
• Can also be applied for regression.
• Decrease in performance with growth of N .

7.6.1 Curse of Dimensionality
Hypervolume of a Thin Shell between 2 Hyperspheres

https://www.mathworks.com/matlabcentral/fileexchange/53260-paradoxical-behavior-of-multidimensional-data?s_tid=srchtitle

Chapter 8

Classification Performance Metrics

Goal: Quantify the performance of a binary classifier
on a test dataset.

Definitions:
• y - target values vector of the test database,

y ∈ RM

• ŷ - predicted value, ŷ ∈ RM , output of some classi-
fier ŷ = fθ(X).

Typically, in binary classification, yi ∈ {0, 1}.

8.1 Definitions
Goal: Classification between two groups (only).

Basic terminology:
• ‘1’ – positive group or result
• ‘0’ – negative group or result
• Y – actual class
• Ŷ – predicted class

Positive/negative terminology is rather arbitrary. Typi-
cally, the result of interest is termed positive.

8.2 Confusion matrix
Goal: Summarize classification results of a test set of a
particular database.

The summarization is in the form of a 2D non-
normalized histogram of (Y, Ŷ).
The (test) database has M values, among them:

• TP + FN positive values
• FP + TN negative values

This is the most common way to summarize the perfor-
mance of a particular classifier on a particular dataset.
It can be easily extended for multi-class classifiers.

8.3 Performance Metrics
Goal: Characterization is useful to compare classifiers
and/or performance on different datasets.

8.3.1 Accuracy
Goal: The most intuitive metric, fraction of Y = Ŷ ,
among all the classification results, Pr

(
Y = Ŷ

)
.

A
ct

ua
lv

al
ue

s

Predicted values

Positive, Ŷ = 1 Negative, Ŷ = 0

P
os

it
iv

e,
Y

=
1

TP
True Positive
Y = 1, Ŷ = 1

FN
False Negative
Y = 1, Ŷ = 0

N
eg

at
iv

e,
Y

=
0

FP
False Positive
Y = 0, Ŷ = 1

TN
True Negative
Y = 0, Ŷ = 0

Figure 1: Confusion matrix. Note, sometimes, trans-
posed representation is used.

Accuracy = correct predictions
total predictions

= TP + TN

TP + NT + FP + FN

(8.1)

Example 8.1: Covid antibody (fast non-PCR) test
performance. The example includes test statistics of
239 participants [?], as presented below.

Predicted

Yes No

A
ct

ua
l Yes 141 67

No 0 31

The resulting accuracy is

Accuracy = 141 + 31
239 = 0.7196652 ≈ 72.0% (8.2)

41

Term Radar Interpretation

Accuracy Percentage of all correctly identified as
planes or not planes

Precision Among all classified as planes, the portion
that is correctly classified as planes

Recall
sensitivity

Among all existing planes, portion of
correctly classified as planes

Specificity Among all classified as non-planes, portion
of correctly classified as non-planes

Table 1: Radar interpretation of the classification met-
rics.

In the example, FN=67 is a bad performance, and FP=0
is probably something good. However, accuracy does not
reflect the discrepancy between these two. Additional
metrics are used to quantify these aspects.

8.3.2 Precision
Goal: Proportion of positive classification that is actu-
ally correct, Pr

(
Y = 1|Ŷ = 1

)
.

From the probability theory,

Pr
(

Y = 1|Ŷ = 1
)

=
Pr
(

Y = 1, Ŷ = 1
)

Pr(Y = 1) (8.3)

Pr(Y = 1) = Pr
(

Y = 1, Ŷ = 0
)

+ Pr
(

Y = 1, Ŷ = 1
)

(8.4)

Precision = TP

FP + TP
= Correctly predicted 1’s

All predicted 1’s
(8.5)

TP = Correctly predicted 1’s
TP + FP = All predicted 1’s

Example 8.1: Back to the previous example,

Precision = 141
0 + 141 = 1 = 100% (8.6)

The high value of the precision is due to the low FP.
From the medical point of view, all positive results are
actually positive. Whoever was identified by this test
as Covid-positive is really positive.

8.3.3 Recall (sensitivity)
Goal: Proportion of positives identified correctly,
Pr
(

Ŷ = 1|Y = 1
)

.

From the probability theory,

Pr
(

Ŷ = 1|Y = 1
)

=
Pr
(

Y = 1, Ŷ = 1
)

Pr
(

Ŷ = 1
) (8.7)

Pr
(

Ŷ = 1
)

= Pr
(

Ŷ = 1, Y = 0
)

+ Pr
(

Ŷ = 1, Y = 1
)

(8.8)

Recall = TP

TP + FN
= Correctly predicted 1’s

Actual 1’s (8.9)

Medical meaning: portion of correctly classified ill
among all the ill.

Example 8.1: Back to the previous example,

Recall = 141
141 + 67 = 0.678 = 67.8% (8.10)

The low value of the recall is due to the high FN. From
the medical point of view, among all the positive results,
only 67.8% are actually positive.

8.3.4 Specificity
Goal: Proportion of negatives identified correctly,
Pr
(

Ŷ = 0|Y = 0
)

.

Specificity = TN

FP + TN
= Correctly predicted 0’s

Actual 0’s
(8.11)

Medical meaning: portion of classified healthy among
all the healthy.

Example 8.1: Back to the previous example,

Specificity = 31
0 + 31 = 1 = 100% (8.12)

From the medical point of view, all negative results are
really negative.

8.3.5 F1-score
Goal: Combination of precision and recall.

The harmonic mean between precision and recall,

F1 = 2
1

recall + 1
precision

= TP

TP + 1
2 (FP + FN)

(8.13)

Example 8.1: Back to the previous example,

F1 = 141
141 + 1

2 (0 + 67)
= 0.808 = 80.8% (8.14)

8.4 Imbalanced Dataset
Imbalanced dataset: Dataset with significant differ-
ences between the numbers of labels of each class. The
following examples present a few problems related to
imbalanced datasets.

Example 8.2: Let’s take a dataset with 1000 samples:
• 990 samples labeled ‘0’

42

• 10 samples labeled ‘1’
What are the performance metrics of the classifier that
always predicts Ŷ = 0?

Solution: The resulting confusion matrix is

Predicted

Yes No

A
ct

ua
l Yes 0 10

No 0 990

and the resulting quantities are

Accuracy = 990
1000 = 0.99 = 99%

Precision = TP

FP + TP
= 0

0 + 0 = Undefined

Recall = TP

TP + FN
= 0

0 + 10 = 0

Specificity = TN

FN + TN
= 990

1000 = 0.99 = 99%

F1 = TP

TP + 1
2 (FP + FN)

= 0
· · ·

= 0

(8.15)

• Note, accuracy is insufficient metrics!
• Note, while the convention is to label ‘1’ for the

most important class outcome, sometimes it is in-
terchangeable.

Majority classifier

Majority class classifier is where the most frequent class
in the data is predicted all the time, e.g. as in example
above. This theoretical “classifier” is often used as
a baseline metric for improvement by other machine
learning techniques.

Small dataset problem

Example 8.3: We have the dataset from the previous
example (Example 8.2). This time, let’s assume that
the theoretical performance of the classifier on class ‘1’
is p = 0.8. What is the probability that the classifier
will classify only 6 samples or less correctly, from 10
measurements?

Solution: The probabilities follow the distribu-
tion. X ∼ Bin(n = 10, p = 0.8) with a question
Pr(X ≤ 6) =?. The numerical solution is

Pr(X ≤ 6) = Pr(X = 0) + · · ·+ Pr(X = 6) ≈ 12.09%

Moreover, Pr(X = 10) = 10.74%.

The analysis of the issue illustrated in the example
is called confidence analysis. While the discussion of
confidence intervals is out of the scope of this document,
this example emphasizes the problem of a small dataset,
particularly in imbalanced data.

Anomaly detection Sub-field of imbalanced prob-
lem: anomaly detection.

8.5 Decision threshold
8.5.1 Receiver Operating Characteris-

tics (RoC)
With the probabilistic loss function, the classifier output
is the probability of

Pr(ŷ = 1) = fθ(x). (8.16)

The binary decision for ŷ is to compare fθ(x) with some
predefined threshold,

ŷ =
{

1 fθ(x) ≥ thr
0 fθ(x) < thr

(8.17)

with the default value of thr = 0.5. The change of
thr may significantly influence the resulting confusion
matrix.

Goal: To quantify the trade-off between confusion ma-
trix elements as a function of thr. The used quantities
are:

• True Positive Rate (TPR) is a synonym for recall.
• False Positive Rate (FPR) is defined by

FPR = FP

FP + TN
= 1− specificity (8.18)

RoC is a legacy term from the field of detector theory
and communication system theory.

Figure 2: Influence of threshold on RoC.

8.5.2 Area under curve (AUC)
Goal: Quantify threshold-independent performance.

AUC: AUC is the area under the RoC curve.
Range: Borderline cases are a coin toss with AUC = 0.5
and an ideal classifier with AUC = 1. All other classifiers
fall in the range 0.5 ≤ AUC ≤ 1.
Properties:

43

Figure 3: RoC comparison.

• AUC is scale-invariant. It measures how well predic-
tions are ranked, rather than their absolute values.

• AUC is classification-threshold-invariant. It mea-
sures the quality of the model’s predictions irre-
spective of what classification threshold is chosen.

• Scale invariance is not always desirable for a per-
formance assessment.

• Classification-threshold invariance is not always de-
sirable. Sometimes some trade-off between false
negatives vs. false positives is required. For exam-
ple, when doing email spam detection, you likely
want to prioritize minimizing false positives (even
if that results in a significant increase of false nega-
tives). AUC isn’t a useful metric for this type of
optimization.

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
P
o
si
ti
v
e

R
a
te

ROC Curve

1 (AUC = 0.9567)
1 Model Operating Point

Figure 4: RoC of logistic regression example in Fig. 1.
The model operation point is thr = 0.5.

Chapter 9

Notation

Numbers and indexing

a Scalar
a Vector
ai Element i of a vector a, indexing starting at 1
A Matrix
aij Element i, j of a matrix A, indexing starting at 1
R Real numbers domain
RD D-dimensional vector
RD1×D2 matrix of a dimension D1 ×D2

Datasets

N Number of features
M Number of entries in the dataset
K Number of classes
w Model parameters
f(·; w) Model
xij Singe data value
xi Singe data vector, i column number in X
X Data matrix
y Target vector for the data in X
ŷ Prediction vector of y
yi Target value
ŷi Predicted target value
L(y, ŷ) Loss function (vector domain)
L(yi, ŷi) Loss function (scalar domain)
a[k] Activation of layer k

z[k] Output of layer k
gk(·) Activation function of layer k

Bibliography

[1] Tomas Andersson. Selected topics in frequency esti-
mation. PhD thesis, KTH Royal Institute of Tech-
nology, 2003.

[2] Dima Bykhovsky. Experimental lognormal modeling
of harmonics power of switched-mode power supplies.
Energies, 15(2), 2022.

[3] Dima Bykhovsky and Asaf Cohen. Electrical network
frequency (ENF) maximum-likelihood estimation via
a multitone harmonic model. IEEE Transactions on
Information Forensics and Security, 8(5):744–753,
2013.

[4] Sharon Gannot, Zheng-Hua Tan, Martin Haardt,
Nancy F Chen, Hoi-To Wai, Ivan Tashev, Walter
Kellermann, and Justin Dauwels. Data science edu-
cation: The signal processing perspective [sp educa-
tion]. IEEE Signal Processing Magazine, 40(7):89–93,
2023.

[5] Monson H Hayes. Statistical Digital Signal Process-
ing and Modeling. John Wiley & Sons, 1996.

[6] Steven M. Kay. Fundamentals of Statistical Signal
Processing, Volume I: Estimation Theory. Prentice
Hall, 1993.

[7] John H Mathews and Kurtis D Fink. Numerical
methods using MATLAB. Pearson, 4th edition, 2004.

	1 Introduction
	1.1 Data types
	1.1.1 Basic
	1.1.2 Signals and time-series
	1.1.3 Dataset
	1.1.4 Adversarial attacks

	1.2 Tasks
	1.3 Basic workflow
	1.4 Model
	1.5 Loss Function
	1.5.1 Loss Function Minimization

	1.6 Metrics

	2 Least-squares and Linear Regression
	2.1 Uni-variate Linear LS
	2.1.1 Definition
	2.1.2 Minimization

	2.2 Vector/Matrix Notation
	2.2.1 Uni-variate model
	2.2.2 Multivariate LS

	2.3 Coefficient of Determination
	2.4 Iterative Solution - Gradient descent (GD)
	2.5 Takeaways

	3 Basic Signal Analysis
	3.1 Signal Preliminaries
	3.2 Amplitude estimation
	3.3 Amplitude and phase estimation
	3.4 Frequency estimation
	3.5 Harmonic Signal Analysis
	3.6 Discrete Fourier Transform (DFT)
	3.6.1 Single frequency analysis
	3.6.2 Power Spectral Density
	3.6.3 Spectral Spreading and Leakage

	3.7 Summary
	Appendices
	3.A Single frequency analysis
	3.A.1 Theory
	3.1.2 Power

	3.2 Takeaways

	4 ARMA Model
	4.1 Auto-Correlation Function
	4.1.1 Linear Prediction & AR(1)
	4.1.2 Auto-correlation function (ACF)
	4.1.3 ACF Properties
	4.1.4 Confidence Interval
	4.1.5 Auto-covariance
	4.1.6 Stationarity and Relation between ACF and PSD

	4.2 AR(p) Model
	4.2.1 Yule-Walker Form
	4.2.2 Moving Average
	4.2.3 Nearest Neighbor (Naïve)
	4.2.4 Time-Domain Filtering

	4.3 Linear Prediction of Sinusoidal Signal
	4.4 Partial auto-correlation function
	4.4.1 Relation between PACF and AR(p)

	4.5 MA model
	4.5.1 MA and AR relations
	4.5.2 The relation between MA(q) and ACF

	4.6 ARMA

	5 Models Characterization and Tuning
	5.1 Polynomial model
	5.2 Overfitting and underfitting
	5.3 Cross-validation
	5.3.1 Summary

	5.4 Generalization
	5.5 Noisy deterministic function interpretation and bias-variance trade-off
	5.6 Takeaways

	6 Overfitting Management
	6.1 Dataset size
	6.2 Regularization
	6.2.1 Ridge Regression
	6.2.2 General aspects

	6.3 Normalization and Standardization

	7 Logistic Regression
	7.1 Generalized Binary Linear Classification Models
	7.2 Basic Linear Model
	7.3 Logistic Model
	7.4 Cross-entropy loss
	7.4.1 Entropy
	7.4.2 Cross-entropy
	7.4.3 Binary Cross-Entropy (BCE)
	7.4.4 Binary Cross-Entropy (BCE) Loss

	7.5 BCE Loss for Logistic Regression
	7.6 k-NN
	7.6.1 Curse of Dimensionality

	8 Classification Performance Metrics
	8.1 Definitions
	8.2 Confusion matrix
	8.3 Performance Metrics
	8.3.1 Accuracy
	8.3.2 Precision
	8.3.3 Recall (sensitivity)
	8.3.4 Specificity
	8.3.5 F1-score

	8.4 Imbalanced Dataset
	8.5 Decision threshold
	8.5.1 Receiver Operating Characteristics (RoC)
	8.5.2 Area under curve (AUC)

	9 Notation

