Chapter 6

Logistic Regression

Goal: Binary classification with linear decision boundary.

6.1 Generalized Binary Linear Classification Models

Generalized linear model: Generalized linear model is the model that applies some (non-linear) function $g(\cdot): \mathcal{R} \to \mathcal{R}$ on $\mathbf{w}^T \mathbf{x}_i$,

$$\hat{y}_i = g(\mathbf{w}^T \mathbf{x}_i) \tag{6.1}$$

For classification, $y \in \{0, 1\}$.

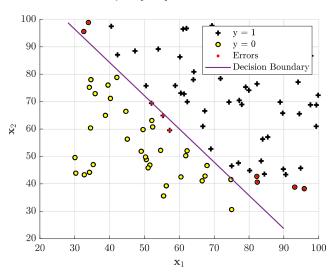


Figure 6.1: An example of linear classification boundary.

Example 6.1: Examples of a function g(x) are,

$$g(x) = x$$
 basic linear model (6.2)

$$\sigma(x) = \frac{1}{1 - \exp(x)} \text{ sigmoid}$$

$$0 \le \sigma(x) \le 1$$
(6.3)

Goal: How to find weights w?

Remainder for the line equation,

$$\mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos(\theta) \tag{6.4}$$

$$\mathbf{x} \perp \mathbf{w} \Rightarrow \theta = 90^{\circ} \Rightarrow \mathbf{x}^T \mathbf{w} = 0$$

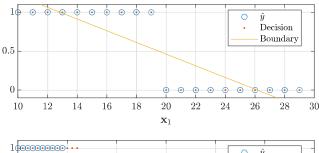
6.2 Basic Linear Model

$$\tilde{\mathbf{y}} = \mathbf{X}\mathbf{w} \tag{6.5}$$

$$\hat{y}_{j} = \begin{cases} 1 & \tilde{y}_{j} > \frac{1}{2} \\ 0 & \tilde{y}_{j} < \frac{1}{2} \end{cases}$$
 (6.6)

Example

$$\mathbf{X}^T = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 & \cdots & 1 \\ 10 & 11 & \cdots & 19 & 20 & \cdots & 29 \end{bmatrix}$$
$$\mathbf{y}^T = \begin{bmatrix} 1 & 1 & \cdots & 1 & 0 & \cdots & 0 \end{bmatrix}$$



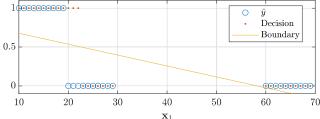


Figure 6.2: 1D synthetic example of classification by linear regression.

Summary

- \tilde{y} may be higher than 1 and lower than 0.
- Outlier has a dramatic influence.

6.3 Logistic Model

Goal: Binary classification model with:

- Linear model
- Outliers handling
- Probabilistic interpretation

Logistic regression is one of the generalized linear classification models that is based on sigmoid function.

Sigmoid function:

$$\sigma(x) = \frac{\exp(x)}{1 + \exp(x)} = \frac{1}{1 + \exp(-x)}$$
 (6.7)

The function is visualized in Fig. 6.3.

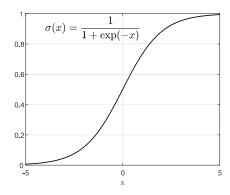


Figure 6.3: Plot of a sigmoid function.

Logistic regression:

$$\hat{y}_i = \sigma(\mathbf{w}^T \mathbf{x}_i) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x}_i)}$$
(6.8)

$$\hat{\mathbf{y}} = \sigma(\mathbf{X}\mathbf{w}) \tag{6.9}$$

Loss function: MSE loss has no closed-form solution and has local minimums⇒ not used.

$$\mathcal{L}(\cdot) = \frac{1}{2M} \|\hat{\mathbf{y}} - \mathbf{y}\|^2 \tag{6.10}$$

Loss function is not necessary metric.

6.4 Cross-entropy loss

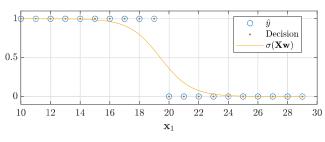
Goal: Probabilistic loss.

The resulting value of $\hat{\mathbf{y}} = f_{\theta}(\mathbf{X})$ has **probabilistic** interpretation and $L(\hat{\mathbf{y}}, \mathbf{y})$ quantifies a distance between target and output distributions. Typically, the distance metrics between probability density functions (PDFs) are used.

6.4.1 Entropy

Entropy: For the discrete distribution $P = \{p_i = \Pr[X = x_i]\}$, the entropy is given by

$$H(P) = -\sum_{i} p_i \log(p_i) \tag{6.11}$$



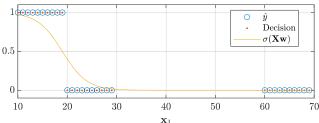


Figure 6.4: 1D synthetic example of classification by linear regression.

The sign depends on the context of the definition (sometimes + is used).

Entropy is a measure of the uncertainty associated with a given distribution, P. It has the maximum value for $p_i = p_j \, \forall i, j$ and drops down for any other combinations. Coding interpretation: The entropy is an information theory measure. One of the interpretations of entropy (with base-2 logarithm and '-' sign) is the theoretical limit on the average number of bits needed to compress the outcomes of the distribution p. Numerical example:

$$\begin{aligned} p_1 &= p_2 = \frac{1}{2} \Rightarrow H(p) = -2 \cdot \frac{1}{2} \log_2 \left(\frac{1}{2}\right) = 1 \\ p_1 &= \frac{1}{10}, p_2 = \frac{9}{10} \Rightarrow H(p) = -\frac{1}{10} \log_2 \left(\frac{1}{10}\right) \\ &- \frac{9}{10} \log_2 \left(\frac{9}{10}\right) \approx 0.4690 \end{aligned}$$

Numerical example:

- Equal probabilities:
 - Consider the transmission of $\{A, B, C, D\}$ sequences over a binary channel. If all 4 letters are equally likely (25%) probable, $p_i = 0.25$.
 - The possible code is {00,01,11,10}. One can not do better than using two bits to encode
 - each letter. - $H(P) = -4 * \frac{1}{4} \log_2 \left(\frac{1}{4}\right) = 2$
 - The lowest possible coding rate is achieved.
- Unequal probabilities example in Table 6.1:
 - Average coding rate is

$$\sum_{i} \text{length}_{i} \cdot p_{i} = 1 * 0.7 + 2 * 0.26 + 3 * 0.02 + 3 * 0.02$$

$$= 1.34$$

- The theoretical lowest coding rate.

$$H(P) = -0.7 \log_2(0.7) - 0.26 \log_2(0.26)$$
$$-0.02 \log_2(0.02) - 0.02 \log_2(0.02) \approx 1.0912$$

Table 6.1: Unequal probabilities example.

Word	Probability, p_i	$Codeword$ C_i	$\begin{array}{c c} \text{Codeword} \\ \text{length,} \\ \text{length}_i \end{array}$
A	0.7	0	1
В	0.26	10	2
\mathbf{C}	0.02	110	3
D	0.02	111	3

$$E[Y] = \sum_{i} y_i \Pr[Y = y_i]$$

6.4.2 Cross-entropy

Cross-entropy: For two discrete distributions, p and q, the cross-entropy is given by

$$H(p,q) = \pm \sum_{i} p_i \log(q_i)$$
 (6.12)

The minimum value of P(p,q) is when p=q, and as a consequence H(p,q)=H(p).

Coding interpretation: One of the interpretations of entropy (with base-2 logarithm and '-' sign) is the theoretical limit on the average number of bits that are required to encode distribution p with the theoretically optimal code for q. Numerical example: Let's encode $\{A,B,C,D\}$ with probabilities $q_i=\left\{\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}\right\}$. In this case, one of the optimal coding options is to use two-bit binary code. Now, let's encode $p_i=\left\{\frac{1}{2},\frac{1}{2},0,0\right\}$ with this code. The resulting quantities are H(p)=1 and H(p,q)=2 which means that instead of optimal 1-bit code for p, the 2-bit code is required if the code optimal for q is used to encode p.

- Notes:
 - $\lim_{x\to 0} x \log(x) \to 0$
 - For a loss function, typically *e*-base logarithm is used
 - Maximum likelihood estimation (MLE) has the same minimum for θ .

6.4.3 Binary Cross-Entropy (BCE)

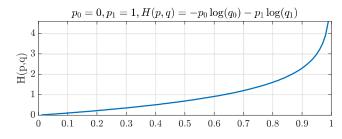
The visualization of BCE of the form

$$H(p,q) = -p_0 \log(q_0) - p_1 \log(q_1) \tag{6.13}$$

is presented in Fig. 6.5 For example, when $p_0 = 0$ and $p_1 = 1 - p_0 = 1$, the expression reduces to $H(p,q) = \log(q_1), q_1 \in [0,1]$.

6.4.4 Binary Cross-Entropy (BCE) Loss

Goal: Minimum cross entropy.



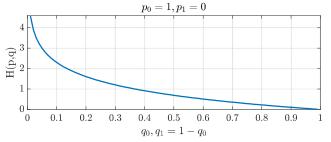


Figure 6.5: Illustration of BCE (Eq. (6.13).

For example, for a single decision for y = 1 in this example, we would like that $f_{\theta}(\mathbf{x}) \to 1$,

$$p_0 = \Pr(y = 0) = 1 - y$$

$$p_1 = \Pr(y = 1) = y$$

$$q_0 = \Pr(\hat{y} = 0) = 1 - f_{\theta}(\mathbf{x})$$

$$q_1 = \Pr(\hat{y} = 1) = f_{\theta}(\mathbf{x})$$

$$H(p, q) = -p_0 \log(q_0) - p_1 \log(q_1)$$

$$= -(1 - y) \log(1 - f_{\theta}(\mathbf{x})) - y \log(f_{\theta}(\mathbf{x}))$$

The discussion is symmetric for $y = 0, f_{\theta}(\mathbf{x}) \to 0$. **BCE loss**: Binary cross-entropy (BCE) loss function

$$\mathcal{L}(y, \hat{y}) = -(1 - y)\log(1 - \hat{y}) - y\log(\hat{y}) \tag{6.14}$$

For multi-valued vector \mathbf{y} the loss is the average (or sum) over all y_i elements,

$$\mathcal{L} = -\frac{1}{M} \sum_{j=1}^{M} (1 - y_i) \log(1 - \hat{y}_i) + y_i \log(\hat{y}_i)$$

$$= -\frac{1}{M} \left[(1 - \mathbf{y}) \log(1 - \hat{\mathbf{y}}) + \mathbf{y} \log(\hat{\mathbf{y}}) \right]$$
(6.15)

Properties: The BCE loss is continuous, differentiable and convex.

6.5 BCE Loss for Logistic Regression

Probabilistic prediction:

$$p(y = 1|\mathbf{x}, \mathbf{w}) = \sigma(\tilde{\mathbf{x}}\mathbf{w})$$

$$p(y = 0|\mathbf{x}, \mathbf{w}) = 1 - \sigma(\tilde{\mathbf{x}}\mathbf{w})$$
(6.16)

Classification decision: $\hat{y} \leq \frac{1}{2}$

Another way:

$$\hat{\mathbf{y}} = \begin{cases} 1 & \mathbf{x}^T \mathbf{w} \ge 0 \\ 0 & \mathbf{x}^T \mathbf{w} < 0 \end{cases}$$
 (6.17)

Vector notation

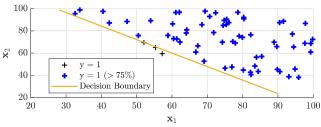
$$\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \frac{1}{M} \left[-\mathbf{y}^T \log (\sigma(\mathbf{X}\mathbf{w})) - (1 - \mathbf{y})^T \log (1 - \sigma(\mathbf{X}\mathbf{w}))^T \right]$$
(6.18)

The first order gradient does not have a closed-form solution.

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \frac{1}{M} \mathbf{X}^{T} \left(\sigma \left(\mathbf{X} \mathbf{w} \right) - \mathbf{y} \right)$$
 (6.19)

However, it can easily found by GD minimization that involves only vector and matrix operations:

$$\mathbf{w}_{n+1} = \mathbf{w}_n - \alpha \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) \tag{6.20}$$



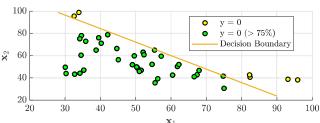


Figure 6.6: Example of $\sigma(\mathbf{X}\mathbf{w}) \geq 0.75$ and $\sigma(\mathbf{X}\mathbf{w}) \leq 0.25$.

Important properties of the logistic regression with BCE loss function:

- Global minimum.
- Continuous, differentiable and convex.
- Regularization can be applied,

$$\mathcal{L}_{new} = \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) + \frac{\lambda}{2M} \sum_{i=1}^{N} w_i^2$$
 (6.21)

• Mapping functions or kernels can be applied. For example, for polynomial mapping

$$\varphi(x_1, x_2) = \langle 1, x_1, x_1^2, x_2, x_2^2, x_1 x_2, x_1^2 x_2, x_1 x_2^2, x_1^2 x_2^2 \rangle$$

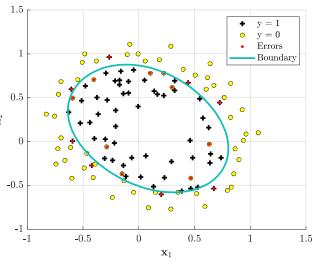


Figure 6.7: Example polynomial $\varphi(x_1, x_2)$ mapping.

6.6 k-NN

Uses k nearest neighbors for a decision.

Different distance metrics, some of them with additional hyper-parameter(s). For example:

• Euclidean distance metric,

$$d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|$$

$$= \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_M - b_M)^2}$$
(6.22)

• City block (Manhattan) distance

$$d(\mathbf{a}, \mathbf{b}) = \sum_{j=1}^{M} |a_j - b_j|$$

$$= |a_1 - b_1| + \dots + |a_M - b_M|$$
(6.23)

• Minkowski distance with (hyper) parameter p,

$$d(\mathbf{a}, \mathbf{b}) = \sqrt[p]{\sum_{j=1}^{M} |a_j - b_j|^p}$$
 (6.24)

For the special case of p=1 the Minkowski distance gives the city block distance. For p=2, the Minkowski distance gives the Euclidean distance.

Tie-breaking (same number of neighbors) algorithm for k > 1 neighbors:

- Random selection.
- Use the class with the nearest neighbor.

Summary

- Fair baseline performance.
- High inference complexity. It requires M distance calculations for each new point (e.g., logistic regression uses \mathbf{w} vector.)
- Can not handle outliers.
- 100% training performance.
- Normalization is required!
- Two hyper-parameters: k and distance metric.
- Can also be applied for regression.