Chapter 6

Logistic Regression

Goal: Binary classification with linear decision bound-
ary.

6.1 Generalized Binary Linear
Classification Models

Generalized linear model: Generalized linear model
is the model that applies some (non-linear) function
g(): # — % on wlx;,

i = g(w'x;) (6.1)
For classification, y € {0, 1}.
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Figure 6.1: An example of linear classification boundary.

Example 6.1: Examples of a function g(z) are,

g(z) = x basic linear model (6.2)
o(x) = T oxp(@) sigmoid (6.3)
0<o(x)<1

Goal: How to find weights w?
Remainder for the line equation,
x"y = [x|[ly| cos(6) (6.4)

xLlw=0=90°=xTw=0

6.2 Basic Linear Model

¥ =Xw (6.5)
1 ij > 5
Uj = 1 (6.6)
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Figure 6.2: 1D synthetic example of classification by
linear regression.

Summary

e ¢ may be higher than 1 and lower than 0.
e Outlier has a dramatic influence.

6.3 Logistic Model

Goal: Binary classification model with:
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e Linear model
o Outliers handling
e Probabilistic interpretation

Logistic regression is one of the generalized linear clas-
sification models that is based on sigmoid function.
Sigmoid function:

exp(r) 1
= = 6.7
o(@) 1+exp(z) 1+ exp(—x) (6.7)
The function is visualized in Fig. 6.3.
1 -
1
ol@) = 1+ exp(—=)
0.81
0.61
0.4r
0.2r
0 ‘
-5 0 §
Figure 6.3: Plot of a sigmoid function.
Logistic regression:
9; = U(WTXi) = ! (6.8)
1+ exp(—wai)
¥ =o(Xw) (6.9)

Loss function: MSE loss has no closed-form solution
and has local minimums=> not used.

£() = —

= o7 —vI’ (6.10)

Loss function is not necessary metric.

6.4 Cross-entropy loss

Goal: Probabilistic loss.

The resulting value of § = fo(X) has probabilistic
interpretation and L(¥,y) quantifies a distance between
target and output distributions. Typically, the distance
metrics between probability density functions (PDFs)
are used.

6.4.1 Entropy

Entropy: For the discrete distribution P =
{pi =Pr[X = LJ}, the entropy is given by

H(P) = —Zm log(p:) (6.11)
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Figure 6.4: 1D synthetic example of classification by
linear regression.

The sign depends on the context of the definition (some-
times + is used).

Entropy is a measure of the uncertainty associated with
a given distribution, P. It has the maximum value for
p; = p; Vi, j and drops down for any other combinations.
Coding interpretation: The entropy is an information
theory measure. One of the interpretations of entropy
(with base-2 logarithm and ’-> sign) is the theoretical
limit on the average number of bits needed to compress
the outcomes of the distribution p. Numerical example:

1

1 1
Pm=p=g5= (p) 5 1082 (2>

1 9 1 1
p1= 1_Oap2 = 10 = H(p) = —1—010g2 (1—0>

9 9
— Zlog, (=) ~04
i 0g2<10> 0.4690

Numerical example:
e Equal probabilities:
— Consider the transmission of {A, B,C, D} se-
quences over a binary channel. If all 4 letters
are equally likely (25%) probable, p; = 0.25.
— The possible code is {00,01,11,10}. One can
not do better than using two bits to encode
each letter.
— H(P) = —4xLlog, (%) —2
— The lowest possible coding rate is achieved.
¢ Unequal probabilities example in Table 6.1:
— Average coding rate is

> length, - p; = 1% 0.7+ 2% 0.26 + 3% 0.02 + 3 % 0.02

=134
— The theoretical lowest coding rate.

H(P) = —0.710g,(0.7) — 0.26 log,(0.26)
—0.0210g,(0.02) — 0.0210g,(0.02) &~ 1.0912
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Table 6.1: Unequal probabilities example.

N Codeword
Word | Probabilie CodeVOfd length,
Di v lengthi
A 0.7 0 1
B 0.26 10 2
C 0.02 110 3
D 0.02 111 3
[ E[Y] =Y, 4 Pr[Y =y ]

6.4.2 Cross-entropy

Cross-entropy: For two discrete distributions, p and
q, the cross-entropy is given by

H(p,q) = ini log(q:) (6.12)

The minimum value of P(p,q) is when p = ¢, and as a
consequence H(p,q) = H(p).

Coding interpretation: One of the interpretations
of entropy (with base-2 logarithm and '—’ sign) is the
theoretical limit on the average number of bits that are
required to encode distribution p with the theoretically
optimal code for q. Numerical example: Let’s encode

{A, B,C, D} with probabilities ¢; = {%, 4 i} In
this case, one of the optimal coding options is to use
two-bit binary code. Now, let’s encode p; = {%, %, 0, O}
with this code. The resulting quantities are H(p) = 1
and H(p,q) = 2 which means that instead of optimal
1-bit code for p, the 2-bit code is required if the code
optimal for ¢ is used to encode p.
Notes:
o lim zlog(z) = 0
z—0
e For a loss function, typically e-base logarithm is
used.
o Maximum likelihood estimation (MLE) has the
same minimum for 6.

6.4.3 Binary Cross-Entropy (BCE)
The visualization of BCE of the form
H(p,q) = —polog(qo) — p1log(qr) (6.13)

is presented in Fig. 6.5 For example, when py = 0
and p; = 1 — pg = 1, the expression reduces to
H(p, q) = log((h),ql € [071]

6.4.4 Binary Cross-Entropy (BCE) Loss

Goal: Minimum cross entropy.

po = 0,p1 = 1, H(p, q) = —polog(qo) — p1log(q1)
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Figure 6.5: Illustration of BCE (Eq. (6.13).

For example, for a single decision for y = 1 in this
example, we would like that fo(x) — 1,

po=Pr(y=0)=1-y

p=Pr(y=1) =y

g =Pr(g=0)=1- fo(x)

g =Pr(g=1)= fo(x)
H(p,q) = —polog(qo) — p1log(q1)

= —(1—y)log(l— fo(x)) — ylog(fe(x))

The discussion is symmetric for y = 0, fo(x) — 0.
BCE loss: Binary cross-entropy (BCE) loss function

L(y,§) = —(1 —y)log(1 —§) —ylog(y)  (6.14)

For multi-valued vector y the loss is the average (or
sum) over all y; elements,

M

1 . .
(1 —yi)log(1 — 9) + yilog(#:)
=1

L=—

<

(6.15)

SEEN

(1 —y)log(1—¥) + ylog(y)]

Properties: The BCE loss is continuous, differentiable
and convex.

6.5 BCE Loss for Logistic Regres-
sion
Probabilistic prediction:

ply = lx,w) = o(xw)
p(y =0lx,w) =1 — o(%w) (6.16)

Classification decision: § < £



25

Another way: Loy P—
T o x =0
1 x*w>0 © ¢} o FErrors
N = 1k
y = {O XTW <0 (617) Boundary
Vector notation 0.5
. 1 &
Ly, §iw) = 77 {*yT log(0(Xw)) — (1 —y)" log(1 — o(Xw; . o
(6.18) I
The first order gradient does not have a closed-form o5l
solution.
1
Vwl(w) = =X (¢ (Xw) —y) (6.19) 1 ‘ ‘ ‘ | |
M 1 0.5 0 0.5 1 1.5
However, it can easily found by GD minimization that X
involves only vector and matrix operations: Figure 6.7: Example polynomial ¢(z1,z,) mapping.
Wpi1 = Wy, — aVgL(w) (6.20)
6.6 k-NN
100 o+ ol ¢ [T S b Uses k nearest neighbors for a decision.
80 N - ++ + ¥, Y * Different distance metrics, some of them with additional
3 60 * +, i F * % 4 "‘f hyper-parameter(s). For example:
" —— + N e FEuclidean distance metric,
y ++ + + 5 +
40 + y=1(T7%) %+ ot
Decision Boundary d(aa b) = ||a - b”
20 1 1 1 1 L 1 1 1
20 30 40 50 60 70 80 90 100 = /(a1 — b1)2+ (az — ba)2 + - + (ans — bas )2
Xl (6.22)
100 ® S 5  City block (Manhattan) distance
-
80 o =0 (> 75%)
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% 60 o ° ° 09 e d(a,b):Z‘a]—bﬂ
S o ° ¢ = (6.23)
40 ® e "° & o o oo
” =la1 —b1| + - + |am — bas]
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Figure 6.6: Example of o¢(Xw) > 0.75 and

o(Xw) < 0.25. (6.24)
Important properties of the logistic regression with BCE For the special case of p = 1 the Minkowski dis-
loss function: tance gives the city block distance. For p = 2, the
¢ Global minimum. Minkowski distance gives the Euclidean distance.
e Continuous, differentiable and convex. Tie-breaking (same number of neighbors) algorithm for
e Regularization can be applied, k > 1 neighbors:
N e Random selection.
¢ Use the class with the nearest neighbor.
Cnew = ‘C(y7y) + ﬁ Zw? (621) &
=t Summary
e Mapping functions or kernels can be applied. For o Fair baseline performance.
example, for polynomial mapping o High inference complexity. It requires M distance
calculations for each new point (e.g., logistic regres-
90(331, $2) = <1,$1,$§7$2, x§,$1$2,$%$2,$1x57$§$%> sion uses w vector.)

e Can not handle outliers.

e 100% training performance.

o Normalization is required!

e Two hyper-parameters: k and distance metric.
e Can also be applied for regression.



