Chapter 3

Models Characterization and Tuning

The goal is:
o Estimate some metrics of the model and understand
the limitations on this estimate.
e Trial and error approach.
e Understand the limitations on the effectiveness of
the model’s ability to make inferences on unfamiliar
data.

3.1 Generalization

Without loss of generality, and for simplicity, uni-variate
definition is used. As we already stated, our data is
a set of (zx,yr) pairs. Let’s assume that the dataset
(x,y) are M samples drawn from some (unknown) joint
probability distribution, (x,y) ~ D. In practice, the
value of M is (very) limited.

When we use some data to “train” some model, f(X;w),
the question is, how can we assess the performance on
other points from D.

Generalization: The difference between performance
metrics over data that is used to train model (train
performance) and performance metric over all (theoreti-
cally) possible points from D (generalization error),

Pgen = E’D[‘](yvy)} (31)

The problem is that the distribution D is unknown
in most of the practical applications. In the following,
method to approximate the generalization probability
will be discussed.

The LS example performance is presented in Fig. 3.1.
Notes:
o Better generalization = smaller difference between
model performance and generalization performance.
e Can be evaluated theoretically only for very simple
models and datasets.
e Require some practical assessment tools, as follows.

3.2 Polynomial model

Goal: e Extension of a linear model “engine” to poly-
nomial models. The polynomial model is very flex-
ible, i.e. due to the Taylor expansion theorem.

o Illustration of generalization principle.
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Figure 3.1: The difference between the results in Fig. 2.2
and the “realistic” performance.

The N-degree uni-variate polynomial model is

g = flz;w) = wo + w1z + wex® 4+ - + wyz™
N _ (3.2)
=D wa’
j=0
The corresponding prediction is
N .
Uk = Zw]—xi (3.3)
§=0

This problem is linear by change of variables, z; = xi,

N
yAk = ijzkj (34)
j=0

Using matrix notation (also termed Vandermonde ma-
trix),

1z 22 - ZY
1 2 a3 - 2
X = . (3.5)
2 N
1 zvm 23y Ty

the weights values are straightforward.
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3.3 Overfitting and underfitting

Goal: Two common and fundamental problems in ma-
chine learning.

Overfitting when model is too complex, i.e. have too
many parameters.

e Too many parameters relative to the number of ob-
servations. Ideally, we want an order of magnitude
more observations than parameters.

o Follow the training data very closely.

o Fail to generalize well to unseen data.

Underfitting happens when a model is too simple.

o Unable to capture the underlying pattern of the
data and hence misses the trends in the data.

¢ Performs poorly on the training data and fail to
generalize.

Overfitting and underfitting are complimentary and bal-
ancing between them is key to building robust machine
learning models that perform well on new, unseen data,
i.e. generalize well.
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Figure 3.2: (a) Overfitting and underfitting polynomial
example. (b) Increasing model complexity improves the
prediction error for training data, but from a certain
point of transitioning from underfitting to overfitting,
it increases the error for test data.

Hyper-parameter optimization The order N is
the hyper-parameter of the polynomial model. Selecting
the most appropriate hyper-parameters value is called
hyper-parameter optimization.

3.4 Cross-validation

Goal: Trial and error approach to quantify generaliza-
tion performance and overfitting-underfitting balance.

The cross-validation is also termed performance assess-
ment.
o First step of any following technique is resample
the dataset into the random order.

Big dataset (tens of thousands):

train/validation/test

Split into three distinctive datasets:

o Training (50-80%): used for learning of model pa-
rameters, e.g. weights w.

o Validation (10-25%): used for assessment of model
hyper-parameters influence.

o Test (10-25%): performance assessment that is sup-
posed to be an estimation for the generalization
erTor.

Medium datasets (hundreds to thousandths): k-
fold

Steps:

e Data Splitting: First, the available dataset is di-
vided into k subsets of approximately equal size.
These subsets are often referred to as “folds."

e Model Training and FEvaluation: The model is
trained k times. In each iteration, one of the subsets
is used as the test set, and the remaining k — 1 sub-
sets are used as the training/validation sets. This
means that in each iteration, the model is trained
and validated on a different combination of training
and test data.

e Performance Evaluation: After training the model
k times, the performance of the model is evaluated
by averaging the performance metrics obtained in
each iteration.

Usually, k is defaulted to 5 or 10.

Missing

figure
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Very small datasets (tens to hundreds): one-hold-
out

Uses k-fold with k& = M, which means that each fold
will contain only one data point.

3.4.1 Summary

Model performance insights from the differences between
train and test datasets and undefitting-overfitting trade-
off are presented in Fig. 3.2(a).

3.5 Noisy deterministic func-
tion interpretation and bias-
variance trade-off

The general model beneath the dataset model is
y=h(x)+e, (3.6)

where f(x) is some unknown function and € is some
random noise with unknown distribution and with
Ele] = 0, Var[e] = .

Prediction is by §; = f(x;;0) and the resulting mse loss
of the model is

M
E[y?] = B[00 +o7] = 5 > (s + )
0
—E [hz(x)} + 2B [h(x)| B E M
=F {hz(x)} +o?
= h*(x) + o?
L = Var[g] + E*[j] — 2h(x)E[j] + h*(x) + o
N 2
= (E[y} h(x) ) + Var[g] +\J/_/

bias2 variance = "0is€

(3.7)
The visualization of this principle for polynomial regres-
sion is presented in Fig. 3.3. Underfitting is low variance
and high bias, and overfitting is high variance and low
bias.

3.6 Takeaways

3.1 The goal is to implement polynomial regression and
find the optimal N for the given problem.
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Figure 3.3: Bias-variance trade-off for polynomial re-
gression.
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Figure 3.4: Overfitting and underfitting at classification
bounds.
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Figure 3.5: Polynomial regression: note the difference
between train and test performance.



Chapter 4

Overfitting Management

Goal: Typically, the most applied models (beyond the
basic linear one) in their general form are overfit data.
The goal is to provide the list of the methods that are
used to manage the overfit.

4.1 Dataset size

Goal: Dataset level in Fig. 1.1.

Adding data usually improves the performance for an
overly complex system as presented in Fig. 4.1.
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Figure 4.1: Bias-variance trade-off for polynomial re-
gression.

4.2 Regularization

Goal: e« Tweak the bias-variance trade-off by penal-
izing weights size.
e Loss function level in Fig. 1.1.
e Introduces new hyper-parameter that have to be
tuned.

Regularization: Penalty to the loss function
Liew = L+ Ag(w) (4.1)

A is termed regularization parameter.
Li-regularization: Special case of g(-), where

A P
ow) = gzl = g bl (42

1
Lo-regularization: Special case of g(w) = YYi w||?,
P
Loew = LA AW w0 4.3
+ \w NEYY; ; w; (4.3)

where vector of weights w does not include wy weight.
Moreover, when normalization is used, no wy weight is
needed.

4.2.1 Ridge Regression

Ridge regression: Ls-regularized linear regression.

- 1 2 A 2
£(w) = o ly - Xl + 2w
S w? (4.4)
= Sy~ Xw)T (y — Xw) £ 2w
Top VYA WEAWIT oW W
Derivative
VL(w) = L (—XT (y —Xw) + )\W) =0 (4.5)
M
Solution

— X" (y = Xw) + Aw = X"y + XTXw + Aw = 0
X'y = XTXw + \w
—1
W= ()\I + XTX) X7y, (4.6)

Can be viewed as special case of linear regression, of
the form

7 =Xw

4.2.2 General aspects

Slope interpretation Higher value of A reduces
(mostly) the highest slopes (weights w;) = the depen-
dency on the parameters with these weights is reduced.
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Figure 4.2: Tllustration of A influence on model fitting.

Polynomial interpretation One-dimensional
dataset (z;,y;) with nonlinear mapping x; =
[;,22,...,2N]. The resulting coefficients w; will be
significantly higher for higher i ( Fig. 4.3). Reducing
them results in smooth ¢ prediction.
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Figure 4.3: Tllustration of weight grows with the poly-
nomial model complexity.

Eigenvalues interpretation The this calculation
limits the smallest eigenvalues to > % and thus improve
the numerical stability.

4.3 Normalization and Standard-
ization

Goal: Data pre-processing level in Fig. 1.1. Used for
multi-variate data.

Values in different columns in X (vectors x;) may be
different by orders magnitudes, i.e. ||x;| > ||x;||. This
results in:
e Some columns have significantly higher influence
on y.
o Numerical instabilities.
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Figure 4.4: Illustration of regularization influence on
the polynomial model.

Standardization: Mapping all the input values such
that they follow a distribution with zero mean and unit
variance.

Zstd = , (48)

where

Implementation steps:
1. On train dataset, evaluate X and o.

2. Apply normalization on train dataset, using X
and oy.

3. Apply normalization on test dataset, using same
x and ox (no recalculation).

When normalization is applied to y, the output of the
model is transformed back, ¥ = ysta0y +¥.
Example: zscore command in Matlab.
Normalization: Mapping all values of a feature to be
in the range [0, 1] by the transformation
T — Ty
Tnorm = - (49)
Tmaz — Tmin

Implementation steps for normalization are similar to
standardization.

Beware, normalization and standardization are
used interchangeably.
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Figure 4.5: Ridge regression: visualization of bias-
variance trade-off.



