Chapter 2

Least-squares and Linear Regression

Goal: e The goal of the least squares (LS) method
is to minimize MSE (or RMSE) between the given
data and the parametric model.

e Define and analyze a model that is based on a linear
relation between data and the outcome.
¢ Find the linear model parameters by LS.

2.1 Uni-variate Linear LS

2.1.1 Definition

The simplest sub-case is the (random) experiment
that produces a set of M points (or measurements),
{J;k,yk}kj\il [7]. The linear model is

y = f(z;wo,w1) = wy + wz, (2.1)

where wg and wy are the model weights (or parameters).

The model outcomes (predictions) are
O = f(xr; wo, w1) = wo + wrzy, (2.2)

where g, is the prediction outcome of xy.
The performance metric is mean-square error (MSE)
that is given by
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or root-MSE (RMSE)
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Note, sometimes MSE is termed as sum of squared errors
(SSE).

For both of these metrics, the corresponding loss (or
cost) function to minimize is

=
=

Llwo,wr) =Y (yr — 9x)’

k

Il
—

(g — wo — wyzy)”

M=

k=1

since either root and/or constant multiplication does
not change the desired minimum,

We, W1 = arg ul]nlllul Tmse(wo, w1)
0,W1

= arg min Jy,se(wo, w1) (2.6)
wo,W1

= arg min £(wp,w1)
wo,Ww1

Note that loss function and performance metrics does
not have to be the same.

2.1.2 Minimization

This minimum is given by a solution of the set of equa-
tions,
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The resulting equations are
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After some basic algebraic manipulations, the resulting
set of equations is
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(2.9)

This set of equations is termed normal equation.

The interesting and numerically stable form of the nu-
merical solution is by usage of average estimation by
mean,

Elf] =7 = %sz (2.10)
k=1

Var[z] = 22 — z° (2.11)

Cov[x,y] =Xy — Xy (2.12)
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Figure 2.1: Linear regression visualization. The goal is
to minimize the total area Y, €2 of the rectangles.

The resulting prediction is

§ =By + I gy

Var x| (2.13)

This is probabilistic result.
Notes:

o Var[x] # 0 requirement.

o Fly]=E[x]=0= wy=0.
Concluding notes:

e The resulting model is also termed as linear regres-
sion, linear trend-line and linear prediction.

e The straightforward solution may result in ill-
conditioned matrix. Reformulation of the solution
can result in a better numerical stability, e.g. [7, Ch.
5, Question 5, pp. 260]. There are more accurate
algorithms than just multiply my inverse matrix.

o For numerical stability, the variance of xj, samples
is required to be non-zero (distinct xy values).

2.2 Vector/Matrix Notation

2.2.1 Uni-variate model

To improve the mathematical representation, vector
notation can be used. This time, the points {xy, yk}iil
are organized into vectors, with a few additional ones,
as follows,

xy Y1 1
L2 Y2
X = 9 Yy = . ]—M— GRA'[,W:|‘UIO
w1
Tm YMm 1
(2.14)
The resulting model notation is
¥ =f(X;w) = 1ywy + xw; = Xw, (2.15)
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where X = {IM x} € and w = [wo wl] .

The corresponding loss functions is

Lw)=y-9"y-9=Iy-3I°

2.16
=(y - Xw) (y - Xw) = [ly — Xw] (216)

and the corresponding optimal minimum (Eq. (2.6))
results from the solution of normal equation (matrix
form)

Vowl()=-XT(y—Xw)=0 (2.17)
and is given by
XT(y —Xw) = XTy - XTXw =0
XTy = (X"X)w (2.18)
-1
wop = (X7X) X7y
2.2.2 Multivariate LS
For the multivariate N-dimensional formulation,
X = [1 Xp - XN:| e RMX(N+)  (919)
T
W = [wo wy - wN} e RN+ (2.20)

All the LS discussion is the same independent from the
number of variables.

Dataset

All the data rows in (X,y) are called dataset. The
matrix X is assumed full-rank, i.e. columns are linearly
independent.

Moore—Penrose inverse (pseudo-inverse)

Moore—Penrose inverse is the extension of an ordinary
inverse matrix for none-rectangular matrices,

X+ = (XTX)_l X7, (2.21)

such that
-1
XX = (X"X) X'X =1
Note, the by-definition implementation of X may have

-1
numerical stability problems with (XTX) . All the

modern programming languages have numerically-stable
and efficient implementation of pseudo-inverse calcula-
tions.

The common numerical calculation is

Wopt = Xy (2.22)
Projection matrix
The model output is given by
-1
y=Xw =X (X"X) X"
y=aw Y (2.23)
= XXy =Py
where .
P=X (XTX) x7 (2.24)

is a projection matrix, i.e. projection of y into a base
derived from X.
Important properties of the matrix P:
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o Symmetric P = PT,

« Idempotent P = P2,

o Orthogonality, P L (I — P)
Proof. PI-P)=P - P2=0.

e« I — P is also projection matrix.

Model error

The model error is
e=y-y=y-Py=(I1-P)y, (2.25)

such that £(w) = e2.

Error and data orthogonality

el X=X"e=0 (2.26)
Proof:
-1
XTe = XTy — XTX (XTX) xXTy
(2.27)
X'y —XTy =0
Error and prediction orthogonality
ely=yle=ely=0 (2.28)

Proof: - r
Vie=y PI-P)y

= yTPy — yTPPy (2.29)
=y"Py—y"Py=0

Average error

1 M
e M kZek
=1 (2.30)

M
Zek =1Te=0
k=1

Proof.

X) (2.31)

MSE

The reduced expression for the resulting minimal MSE
is

M N
MSemin = Z y,% — Z wijxj (2.32)
k=1 §=0

Proof.
MSemin — eTe
=(y—-9)"e
—yTe- 3%
=y (y - Xw) (233)
=y'y-y" {1 x| XN] w

BLX(N+1)

2.3 Loss Function Minimization

Goal: Minimum of the loss function for a given model.

Closed-form solution A closed-form solution for w is
a solution that is based on basic mathematical functions.
For example, a "normal equation" is a solution for linear
regression/classification.

Local-minimum gradient-based iterative algo-
rithms This family of algorithms is applicable only
for convex (preferably strictly convex) loss functions.
For example, gradient descent (GD) and its modifica-
tions (e.g., stochastic GD) are used to evaluate NN
parameters. Another example is the Newton-Raphson
algorithm.
¢ Some advanced algorithms under this category also
employ (require) second-order derivative %E for
faster convergence.
o If either derivative is not available as a closed-form
expression, it is evaluated numerically.

Global optimizers The goal of global optimizers
is to find a global minimum of non-convex function.
These algorithms may be gradient-free, first-derivative
or second-derivative. The complexity of these algorithms
is significantly higher than the local optimizer and can
be prohibitive for more than a few hundred variables in
0.

2.3.1 Iterative Solution - Gradient de-
scent (GD)

Goal: Find the minimum of the function:
o First-order derivative based.
¢ Local minimum.

Let’s assume some function y = f(z), with z,y € £,
differentiable with % = f'(x).
e f/(x) is a slope of f(x) at a point x.
¢ By the definition of the derivative, for some small
65

fat o) @)+ ef' (@)
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o Given the sign of the derivative,

flx—e) < f(z), ['(z)>0
flx+e) < f(x),

o For sufficiently small ¢,

f(z —esign(f'(2))) < f(x)

The idea of the algorithm is to reduce f(x) by going in
direction opposite sign of derivative, f'(x).

Gradient descent (GD) - scalar function: For
differentiable function f(z), the iterative algorithm

Tyt = Ty — af (x,) (2.34)

converges to some local minimum of f(x).
Required parameters are:

e Step-size « > 0 is some positive constant or some

function of n, «,,.

e 1z is an initial guess.

Some of the most common stopping conditions are:
e Reaching the point of slow convergence,
‘xn-i-l - mn' <e.

e Limiting the number of iterations, n < ng.
Gradient descent (GD) - vector function: For dif-
ferentiable multivariate and multidimensional function
f(x): Z~ — %", the iterative algorithm is

Xpi1 = Xn — Vi f (Xn). (2.35)

Each dimension is iteratively reduced according to its
derivative. Notes:

e Easy to implement.

e Requires analytical or numerical derivative.

e Non-trivial selection of the optimal value of «. In
more general case, vector of n-dependent values
may be desirable.

o Useful only for the function with single (global)
minimum, such as MSE minimization.

GD for MMSE: Optimal values of w may be found
by

Wnpt1 = Wy — CMVWL

—w _ XxT _

2.4 Takeaways

2.1 This assignment focuses on understanding the inter-
pretation of weights values. For the multivariate vector
of the weights, w:
o What is the meaning of the 4+ or — sign of the each
weight w;?
o What is the influence of the magnitude (relative
size) of weights w,?

2.2 This assignment focuses on understanding the ef-
fects of sample size on the estimation accuracy of lin-
ear regression parameters using the Least Squares (LS)

method. The task involves running simulations to gen-
erate linear data with varying numbers of data points,
followed by fitting a linear regression model to this data
and analyzing the resulting mean squared error (MSE).
e Perform linear regression using the LS method, and
analyze the MSE across different sample sizes.
¢ Repeat each MSE evaluation for at least 30 times.
e Summarize the results in boxplot as in the plot.
¢ Does it seem reasonable the the MSE grows with
an increase in M?
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Figure 2.2: MSE as a function of number of data points,
M.

These assignments will help you understand the practical
implications of linear regression and the influence of data
size on model performance.



