
1

Sound Analysis of Drop Characteristics by
Evaluation of Impact on Water Pool

Merav Arogeti∗, Etan Fisher∗, Dima Bykhovsky‡
∗Mechanical Engineering Department, Shamoon College of Engineering, Beer-Sheva, Israel

‡Electrical and Electronics Engineering Department, Shamoon College of Engineering, Beer-Sheva, Israel

Abstract—The goal of this research is to study and characterize
the effects of water drop impact on a deep water pool using sound
recordings. In this paper, we present the experimental setup and
the analysis of two sets of droplet sizes. The recordings provide
significant temporal and spectral information that may be useful
tools in the classification of drop characteristics. A general SVM
was trained to classify droplets into the two size categories. The
resulting accuracy for the classification is 94.4%.

I. INTRODUCTION

The goal of this research is to study and characterize the
effects of water drop impact on a deep water pool using
acoustic signals. Analysis is demonstrated by examining some
of the temporal and spectral characteristics. Machine learning
is applied to automatically classify droplet size given the audio
recordings of the individual droplets.

When a drop impacts a water pool, its behavior varies with
speed and liquid characteristics. The interplay of capillary,
surface tension, and viscous forces influences droplet formation
and fragmentation [1]. Ray [2] categorizes these phenomena
into seven regimes, characterized by unique patterns such as
coalescence, jet formation, and bubble entrapment. Common
stages across these regimes include crater and wave swell
expansion, wave swell retraction and crater retraction.

High-speed image analysis, including X-ray imaging [3], [4],
and laser Doppler velocimetry [5], [6], are common in drop
impact studies.

Audio recording provides an accessible alternative. Stud-
ies have used audio recordings to document hydrodynamic
and acoustic processes [7], [8]. In other fields of research,
audio recordings have been shown to be practical in various
applications, including meteorology and water leak detection
[9]–[11].

The effectiveness of machine learning models has been
demonstrated in different studies, such as those involving the
analysis of high-speed image sequences of drop impacts on
liquid pools [12].

Utilizing acoustic signatures to classify hydrodynamic phe-
nomena, as shown in [13], could significantly enhance the
learning base for identifying signals.

The specific objective of the study presented in this paper
is to derive the physical characteristics of droplets from
their acoustic recordings. Through the application of machine
learning, the study aims to analyze the temporal and spectral
data captured in audio recordings of droplet impact, thereby
offering dependable insights into the dynamics of droplet

interactions. The workflow related to this objective is depicted
in Fig. 1.
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Fig. 1. Illustration of the research workflow designed to derive physical
characteristics of droplets from acoustic recordings using machine learning.

II. EXPERIMENTAL DESIGN

A. Technical Design

A water pool filled with tap water is placed beneath a distilled
water drop generator (Fig 2). The measured distilled water
density was 987.3 kg/m3. The experiment consisted of two
sets of drops released from a height of 220mm. Multiple drops
were weighted and then the average volume value was derived.
The documented dataset consisted of 124 drops, 49 of which
were at an average volume of 55 µL and 75 of which were at
an average volume of 76 µL. Table I presents the drop-volume
measurement.

B. Acoustic Setup

In previous studies, varying microphone setups were used, for
example, in [8], acoustic data was recorded using a high-quality
multi-purpose audio interface. In [13], acoustic measurement-
standard equipment was used for recording microphone and
hydrophone signals.

Several microphones were tested for our setup, including
several multi-purpose dynamic and condenser microphones. A
high-sensitivity directional condenser microphone provided fa-
vorable results (Audio Technica AT2031 condenser microphone
with low pass filter). Further research may compare experiment
results using acoustic measurement-standard equipment. Signals
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Fig. 2. The experimental setup photo.

were sampled at 44, 100 samples per second using a FocusRite
2-channel sound card.

The dataset consisted of 124 drops, 49 of which were 55
µL and 75 of which were 76 µL. Each droplet recording was
separated into a 25,000 sample signal.

An example of two different recordings of the 76µL-sized
drops is presented in Fig. 3. Note the significant difference

TABLE I
AVERAGE DROP VOLUME EVALUATION.

Number
of drops

Weight
[gr]

Average
weight

[gr]

Volume
[µL] Average

15 0.7053 0.047 47.6

55.1
15 0.837 0.056 56.5

10 0.5422 0.054 54.9

10 0.605 0.061 61.3

15 1.1437 0.076 77.2

76.48
15 1.1841 0.079 80.0

10 0.7171 0.072 72.6

10 0.7515 0.075 76.1

Fig. 3. An example of a tagged drop impact sound recording. The difference
between recordings follows the different droplet regimes.

between the recordings. These differences indicate the regimes
described in [2].

III. PRELIMINARY ANALYSIS

Previous studies of drop impact characteristics examine both
temporal and spectral characteristics of the data. This indicates
spectrograms may be used to as a suitable tool for studying
the droplets. The spectrograms in the following figures were
created using a 512 sample window, an overlap of 511 samples
and an FFT size of 2048 samples. Within each size group,
several types of behavior were noticed. Within the 55µL group,
the drops typically displayed either a single event or a dominant
event followed by a slightly weaker event at a lower frequency
value. Figure 4 shows the spectrogram for two single event
droplets. In these examples, the energy is centered at around
5.75kHz.

Figure 5 shows the spectrogram for two 55µL ’multiple
event’ drops. In both drops, the energy of the first, dominant,
event is around 10kHz, and the energy of the second event
is between 7− 8kHz. The second event occurs approximately
20ms after the first.

The drops within the 76µL group displayed varying behavior.
Figures 6 and 7 show the spectrograms of four drops. Due to
the larger drop size, the duration of each drop was longer than
that of the 55µL drop. Therefore, in the spectrograms of the
55µL droplets, the time scale is 30 msec, and for the 76µL
droplets, the time scale is 200 msec.

The graphs in 7 show a multiple event behavior, in which a
second event appears approximately 120ms after the first. The
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Fig. 4. Spectrograms of two 55µL single event drops. Energy is centered
around 5.75 kHz
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Fig. 5. Spectrograms of two 55µL drops with multiple events. The energy
of the dominant event is centered around 10kHz. The second event occurs
approximately 20 msec after the first.
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Fig. 6. Spectrograms of two 76µL drops with single events. The energy of
the two drops is below 5kHz.

energy of the first event in these drops is between 5− 6kHz.
Figure 6 shows two examples of drops with a single, dominant
event. The energy of the two drops is below 5kHz.

Figure 8 presents a comparison between the normalized
fast Fourier transforms of the two full sets of drops. The
signals were down-sampled to 16kHz in order to examine the
signal content below 8kHz. In the heavier (76µL) drop set a
greater degree of signal content can be noticed below 5kHz.
In the 76µL set the signal content below 5kHz was 44% while
in the 55µL set it was only 18%.

The above analysis demonstrates that using audio to record
drop impact can provide significant temporal and spectral
information and may be useful in the analysis of drops. Other
methods to this effect also appear in [13].

IV. FEATURE EXTRACTION & CLASSIFICATION

The dataset consists of 10 sound recordings, each ap-
proximately 1 minute in duration. Five recordings are with
55 µL droplets, and the other five with 76 µL droplets. These
recordings were processed using a peak location algorithm to
identify the location of each sound event. The resulting dataset
includes 124 events, each 25,000 samples long.

The feature extraction performed by catch22 library,
which encompasses 22 different methods selected for their
robustness across varied datasets [14]. For each event, the
library returns a 22-dimensional feature vector. Finally, all the
events were organized in the 22× 124 feature matrix that was
used for classification.

Model performance was evaluated using an extended 5-
fold cross-validation approach to ensure robustness and reduce
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Fig. 7. Spectrograms of two 76µL drops with multiple events. The energy of
the first event in these drops is between 5− 6kHz. A second event appears
approximately 120ms after the first.

1000 2000 3000 4000 5000 6000 7000 8000

Frequency [Hz]

0

0.1

0.2

0.3

0.4

A
m

pl
itu

de
 (

N
or

m
.)

1000 2000 3000 4000 5000 6000 7000 8000

Frequency [Hz]

0

0.1

0.2

0.3

0.4

A
m

pl
itu

de
 (

N
or

m
.)

Fig. 8. Normalized FFTs of the two sets of drops, top 55µL, bottom 76µL

TABLE II
CONFUSION MATRIX

Predicted

55µL 76µL

A
ct

ua
l 55µL 46 3

76µL 4 71

overfitting. The SVM classifier has the resulting classification
accuracy of 94.4%. The corresponding confusion matrix is
presented in Table II.

V. SUMMARY & FUTURE WORK

This study explores the feasibility of characterizing drop
properties through the recording of impact sounds. An ex-
perimental setup was introduced, and two sets of data were
analyzed.

A further goal is to refine the characterization process, ulti-
mately enabling the classification of impact regimes. This sound
analysis leverages machine learning (ML) techniques to achieve
these objectives. In subsequent studies, the impact of individual
droplet events will be investigated, analyzing how various
parameters, such as drop characteristics and initial conditions,
contribute to the resulting acoustic signature. This research
aims to refine event classification based on these findings. For
signal processing, additional feature extraction methods using
hctsa [15] or tsfresh [16] software packages may be
examined. The next stages would involve reducing irrelevant
features by an appropriate feature selection algorithm and
hyper-parameter optimization of the SVM classifier.
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